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Abstract : This paper presents a method for compensating motion-induced distortion in 3D LiDAR 

point cloud data using sensor fusion of Global Positioning System (GPS) and Inertial Measurement 

Unit (IMU) data. LiDAR sensors, which scan environments by rotating mirrors, often assume a static 

viewpoint. However, the motion of the ego vehicle introduces discrepancies between the assumed and 

actual viewpoints, leading to distorted point cloud data. To address this, our approach fuses accurate 

positioning data from GPS with high-frequency motion dynamics from IMU to estimate the vehicle's 

odometry. This data is aligned in the East-North-Up (ENU) coordinate frame and used to interpolate 

the vehicle's motion during each LiDAR scan. Each point in the point cloud is then adjusted based on 

the interpolated odometry to correct the distortions. Utilizing data from Udacity® recorded with 

GPS, IMU, camera, and LiDAR sensors, our method effectively reconstructs an accurate 

representation of the surroundings. This process is critical for applications such as autonomous 

driving and environmental modeling, where precise and reliable point cloud data are essential. 
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Introduction 

Sensor fusion-based motion compensation in 3D LiDAR point clouds is crucial for 

enhancing the accuracy of object detection and motion tracking in autonomous systems. 

Recent advancements leverage temporal data and multi-sensor integration to address 

motion distortion and improve performance. The TM3DOD method aggregates temporal 

LiDAR data to enhance 3D object detection by capturing motion features from 

consecutive point clouds. This approach significantly improves detection accuracy 

compared to traditional methods (Park et al., 2024). Qin et al., (2022) propose a method 

that utilizes LiDAR odometry to correct motion distortion in point clouds. By selecting 

uniform feature points and applying Euclidean clustering, their technique effectively 

reduces errors in SLAM algorithms. A multi-sensor approach combines LiDAR with 

IMUs to capture human motion accurately. This method optimizes local actions and 

corrects translation deviations, resulting in precise motion capture (Ren et al., 2023). Haas 

et al., (2023) developed a neural network to estimate object velocity from LiDAR data, 

addressing motion distortion without requiring sensor fusion. This method enhances 

tracking reliability. 
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In contrast, while these advancements show promise, challenges remain in achieving real-

time processing and handling complex environments, which may limit their practical 

applications in dynamic scenarios. 

One of the widely explored techniques in motion compensation is the fusion of LiDAR 

with IMU data. The IMU provides precise measurements of angular velocity and linear 

acceleration, which can be used to track the sensor's motion and adjust the LiDAR point 

cloud accordingly. Jiang et al., (2024) developed a sensor fusion algorithm that fuses 

LiDAR data with IMU measurements, enabling accurate motion compensation for mobile 

platforms like autonomous vehicles. Their approach used a Kalman filter to fuse the IMU 

and LiDAR data, demonstrating significant improvements in the accuracy of point clouds 

under dynamic conditions. 

Similarly, Zhang & Singh, (2014) proposed a method combining LiDAR with visual 

odometry to address the issue of motion distortion. Their research employed a tightly 

coupled LiDAR-visual-inertial system to mitigate distortions during high-speed vehicle 

motion, particularly in GPS-denied environments. Their results showed substantial gains 

in localization accuracy compared to systems that only used LiDAR or visual odometry 

alone. 

Kalman filtering is a popular statistical method used to fuse sensor data. It recursively 

estimates the state of a system, considering both the process model and sensor noise. One 

of the foundational works in this domain, by MAILKA et al., (2024), developed a Kalman 

filter-based sensor fusion framework that integrated LiDAR, GPS, and IMU data to 

perform motion compensation in dynamic environments. The framework significantly 

enhanced the robustness of the point clouds, particularly in urban driving conditions. 

Chen et al., (2023) proposed an extended Kalman filter (EKF) to further enhance the 

fusion process between LiDAR and IMU sensors. Their EKF-based system could track 

non-linear movements more accurately, providing better motion compensation in real-time 

for autonomous drones and robots. The fusion of GPS, IMU, and LiDAR technologies is 

crucial for enhancing localization accuracy in autonomous vehicles, particularly in 

complex or challenging environments. Each sensor brings unique strengths to the table, 

compensating for the weaknesses of the others. GPS offers accurate positioning in open 

spaces but struggles in urban or indoor areas due to signal interference (Alaba, 2024). IMU 

provides continuous motion data and works well in GPS-denied environments, yet its 

accuracy degrades over time due to drift. LiDAR is excellent for detailed mapping and 
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localization, though it can face challenges in feature-scarce environments (Gao et al., 

2023). To maximize the benefits of these sensors, fusion techniques such as Kalman 

Filtering, including Unscented and Consensus Kalman Filters, and Factor Graph 

Optimization are employed. These methods enhance overall accuracy and robustness by 

reducing error accumulation and improving pose estimation (Alaba, 2024; Chen et al., 

2023; Gao et al., 2023). 

Effective fusion depends on precise sensor calibration and system resilience. Accurate 

calibration methods, such as two-step self-calibration, ensure that the sensor data aligns 

correctly, enhancing reliability (Nie et al., 2023). Additionally, resilience engineering 

evaluates how well the system recovers from disruptions, providing critical insights into 

the system's performance under different operating conditions (Fanas et al., 2023). Despite 

significant advancements, challenges remain in ensuring consistent localization 

performance in varying environments. Future research may focus on refining these fusion 

techniques and improving calibration methods to enhance the robustness and reliability of 

autonomous navigation systems further. 

The study addresses a critical gap in the accurate utilization of LiDAR data for 

autonomous systems, particularly the challenge of motion-induced distortion caused by 

ego vehicle movement during LiDAR scans. Existing motion compensation techniques 

often rely solely on point cloud data, which proves inadequate for correcting distortions, 

especially during complex, high-speed vehicle motion. Additionally, while sensor fusion 

techniques involving GPS and IMU have been explored, there has been limited research 

on their integration for real-time point cloud correction, leaving a gap in achieving precise 

motion compensation. Furthermore, issues of alignment between GPS, IMU, and LiDAR 

data in a unified coordinate system complicate the compensation process. This study 

resolves these gaps by proposing a method that fuses GPS and IMU data to estimate ego 

vehicle motion and compensates for point cloud distortions, while ensuring all sensor data 

is aligned within a common vehicle coordinate system. This comprehensive approach 

significantly improves the accuracy and robustness of motion compensation, offering a 

practical solution for real-world autonomous driving applications. 

The problem addressed in this study is the motion-induced distortion in LiDAR point 

cloud data caused by the movement of the ego vehicle during sensor scans. This distortion 

results in inaccurate environmental representations, which can hinder the performance of 

autonomous systems, particularly in dynamic driving scenarios. Current motion 
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compensation methods, which either rely solely on point cloud data or lack effective 

sensor fusion techniques, fail to provide the precision needed for real-time correction of 

these distortions. The challenge lies in accurately estimating the vehicle's motion using 

data from multiple sensors (GPS and IMU), aligning this data in a unified coordinate 

system, and applying it to correct the point cloud. Solving this problem is essential for 

improving the accuracy and reliability of LiDAR-based perception in autonomous driving 

applications. 

Methodology 

The methodology for compensating motion-induced distortion in 3D LiDAR point clouds 

using sensor fusion begins with data acquisition and preparation. GPS, IMU, and LiDAR 

data are downloaded from the Udacity dataset, unzipped, and loaded into MATLAB. The 

LiDAR data is transformed from its original ENU frame to the vehicle ENU frame using a 

rigid transformation, while GPS and IMU data are aligned with the vehicle's coordinate 

system. LiDAR frames are selected for motion compensation, and GPS data is converted 

to the vehicle's ENU frame for consistency.  

 

Figure 1: Methodology workflow. 

 

The next step involves fusing GPS, IMU, and LiDAR data into a unified timetable, 

followed by applying a Kalman filter to fuse the GPS and IMU data, estimating the ego 
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vehicle's position and orientation. This fusion process uses synchronized sensor data with 

initial states and measurement covariances, providing an accurate odometry estimate. The 

estimated ego vehicle odometry is transformed from the NED frame to the ENU frame, 

creating transformation objects representing the vehicle's pose at each LiDAR timestamp. 

Motion compensation is applied by estimating timestamps for each LiDAR point and 

computing the relative transformation between consecutive LiDAR frames. The 

undistortEgoMotion function corrects the distortion in the point cloud data based on these 

transformations. Figure 2 presents the coordinate transformation to a common coordinate 

system. 

 

Figure 2: Coordinate transformation workflow. 

Finally, the original and compensated point clouds are visualized to evaluate the 

effectiveness of the compensation, with the entire process looping through all selected 

LiDAR frames to ensure comprehensive correction of motion-induced distortions. 

Results and Discussion 

The diagram (Figure 3) illustrates the impact of motion compensation on point cloud data 

collected by a LiDAR sensor mounted on a moving vehicle. In this visualization, two 

distinct regions are highlighted: a green region representing the ground and a red region 

representing a signboard. The green region demonstrates how motion compensation has 

successfully corrected the distortion in the point cloud data related to the ground. This 

means that after adjusting for the ego vehicle's motion, the ground appears more accurately 



                                                             Asian Conference on Remote Sensing (ACRS 2024)  

Page 6 of 8 
 

in the 3D LiDAR data, with reduced blurring or stretching. 

 

 

Figure 3: Original point cloud and motion compensated point cloud. 

Similarly, the red region highlights the correction applied to the signboard. Without 

motion compensation, the signboard would appear distorted or misaligned due to the 

motion of the vehicle while the LiDAR sensor was scanning. After compensation, the 

points on the signboard are correctly aligned, and the structure appears clear and 

undistorted in the point cloud. This diagram effectively demonstrates the improvements in 

accuracy and fidelity achieved by compensating for the ego vehicle's movement during 

data collection. 

The motion compensation was applied to multiple frames of the recorded LiDAR data, and 

the results demonstrated a significant improvement in the accuracy of the point cloud 

representation. In the original point cloud, distortions caused by the ego vehicle's motion 

were clearly visible, particularly in areas close to the ground and on vertical structures like 

signboards. Figure 4 illustrates the motion compensation applied to another frame of data. 

 

Figure 4: Original point cloud and motion compensated point cloud. 

After applying motion compensation, the corrected point cloud displayed much smoother 
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and more coherent surfaces. The ground region, highlighted in green, showed less 

distortion, while vertical structures such as signboards, represented in red, were corrected 

to appear more consistent and aligned. These results confirm that motion compensation 

effectively mitigates motion-induced errors, resulting in a more accurate depiction of the 

environment. Figure 5, presents the different scenario of the data when applied with the 

motion compensation technique. 

 

Figure 5: Original point cloud and motion compensated point cloud. 

 

Conclusion and Recommendation  

This study successfully demonstrates the effectiveness of sensor fusion, combining GPS 

and IMU data, to compensate for motion-induced distortion in LiDAR point cloud data 

collected from a moving ego vehicle. By aligning the data in the ENU coordinate system 

and applying motion compensation algorithms, the research effectively corrected 

distortions caused by vehicle movement. The results highlight significant improvements in 

the accuracy of point cloud representations, especially for ground surfaces and vertical 

structures. These enhancements are critical for autonomous driving applications, where 

precise environmental perception is essential for safe and reliable navigation. 

Future work could focus on implementing real-time motion compensation algorithms to 

further improve the operational efficiency of autonomous vehicles. Expanding the sensor 

fusion approach to include additional sensors, such as cameras and radar, may improve 

robustness in challenging environments like adverse weather conditions. Additionally, 

exploring motion compensation for vehicles operating on uneven or off-road terrains could 

provide valuable insights. Optimizing the computational efficiency of these algorithms for 

low-power systems is another potential area of research. Lastly, integrating deep learning 

models to further refine and correct point cloud data could lead to even higher accuracy in 
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understanding the vehicle’s surroundings. 

References  

Alaba, S. Y. (2024). GPS-IMU Sensor Fusion for Reliable Autonomous Vehicle Position 

Estimation. http://arxiv.org/abs/2405.08119 

Chen, H., Wu, W., Zhang, S., Wu, C., & Zhong, R. (2023). A GNSS/LiDAR/IMU Pose 

Estimation System Based on Collaborative Fusion of Factor Map and Filtering. Remote 

Sensing, 15(3). https://doi.org/10.3390/rs15030790 

Fanas Rojas, J., Kadav, P., Brown, N., Meyer, R., Bradley, T., & Asher, Z. (2023). 

Quantitative Resilience Assessment of GPS, IMU, and LiDAR Sensor Fusion for 

Vehicle Localization Using Resilience Engineering Theory. SAE Technical Papers. 

https://doi.org/10.4271/2023-01-0576 

Gao, L., Xia, X., Zheng, Z., & Ma, J. (2023). GNSS/IMU/LiDAR fusion for vehicle 

localization in urban driving environments within a consensus framework. Mechanical 

Systems and Signal Processing, 205. https://doi.org/10.1016/j.ymssp.2023.110862 

Haas, L., Haider, A., Kastner, L., Zeh, T., Poguntke, T., Kuba, M., Schardt, M., Jakobi, M., & 

Koch, A. W. (2023). Velocity Estimation from LiDAR Sensors Motion Distortion 

Effect. Sensors, 23(23). https://doi.org/10.3390/s23239426 

Jiang, X., Kuroiwa, T., Zhang, H., Yoshida, T., Sun, L. F., Cao, Y., Zhang, H., Kawaguchi, 

T., & Hashimoto, S. (2024). Enhanced Mobile Robot Odometry with Error Kalman 

Filtering Incorporating 3D Point Cloud Intensity. IEEE Access. 

https://doi.org/10.1109/ACCESS.2024.3434578 

MAILKA, H., Abouzahir, M., & Ramzi, M. (2024). An efficient end-to-end EKF-SLAM 

architecture based on LiDAR, GNSS, and IMU data sensor fusion for autonomous 

ground vehicles. Multimedia Tools and Applications, 83(18), 56183–56206. 

https://doi.org/10.1007/s11042-023-17595-w 

Nie, X., Gong, J., Cheng, J., Tang, X., & Zhang, Y. (2023). Two-Step Self-Calibration of 

LiDAR-GPS/IMU Based on Hand-Eye Method. Symmetry, 15(2). 

https://doi.org/10.3390/sym15020254 

Park, G., Koh, J., Kim, J., Moon, J., & Choi, J. W. (2024). LiDAR-Based 3D Temporal 

Object Detection via Motion-Aware LiDAR Feature Fusion. Sensors, 24(14), 4667. 

https://doi.org/10.3390/s24144667 

Qin, P., Zhang, C., Ma, X., & Shi, Z. (2022). High-Precision Motion Compensation for 

LiDAR Based on LiDAR Odometry. Wireless Communications and Mobile Computing, 

2022. https://doi.org/10.1155/2022/5866868 

Ren, Y., Zhao, C., He, Y., Cong, P., Liang, H., Yu, J., Xu, L., & Ma, Y. (2023). LiDAR-aid 

Inertial Poser: Large-scale Human Motion Capture by Sparse Inertial and LiDAR 

Sensors. IEEE Transactions on Visualization and Computer Graphics, 29(5), 2337–

2347. https://doi.org/10.1109/TVCG.2023.3247088 

Zhang, J., & Singh, S. (2014). LOAM: Lidar Odometry and Mapping in Real-time. Robotics: 

Science and Systems. https://doi.org/10.15607/RSS.2014.X.007 

 


