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Abstract Phytoplankton is a common type of plankton in the Kuibyshev Reservoir, located in the 

middle course of the Volga River. Observations of phytoplankton concentration are conducted as part 

of regular field expeditions. However, due to the large surface area of the water, these measurements 

do not give us clear understanding of changes in chlorophyll a concentration and phytoplankton 

biomass over time and space. Meanwhile, during the active reproduction period of phytoplankton, it 

can be observed visually. Therefore, our study aims to analyze the possibility of using remote sensing 

data to assess phytoplankton development. For this purpose, data from Sentinel 2 satellites (4 

channels with a resolution of 10 meters and 6 channels with a resolution of 20 meters) were used. We 

used Sentinel-2 data corresponding to the coordinates of the points and the dates of field studies. The 

total number of points with laboratory-measured indicators and corresponding 10-channel remote 

sensing data exceeded 80. These data were used to train some regression models including linear 

regression, Ridge regression, Lasso regression, and other models to estimate chlorophyll a 

concentration. The results showed that the estimation error decreases as the number of samples 

increases, and overall, Sentinel-2 data can be used for rough concentration estimates. Due to the 

insufficiency of laboratory data for training high-precision models, we also conducted one more 

experiment with manually labeled images to train binary classification models for detecting areas 

with high plankton concentration. More than 20 satellite images containing the water area of the 

Zhiguli Sea (the Priplotinnoye Reach of the Kuybyshev Reservoir) were used for training and testing 

the classifiers. As a result, XGBoost and CatBoost classifiers were trained on the labeled data. Both 

showed an accuracy of around 0.89 on the test set. The experimental results demonstrated that this 

approach is an appropriate way to train high-quality classification models, enabling a global analysis 

of phytoplankton distribution over time and space. 
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Introduction 

"Blooming" of water refers to any excessive growth of planktonic unicellular, colonial, 

and filamentous algae, in which they become visually noticeable, affect water 

management activities, or cause the death of aquatic organisms [1-2]. In freshwater bodies 

of the temperate climate zone, cyanobacterial blooms occur most frequently [3]. In recent 

decades, the intensity, frequency, and duration of cyanobacterial blooms in freshwater 

continental bodies of water have been increasing [4] (see Fig. 1). 
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Figure 1: Examples of "blooming water". 

The Kuybyshev Reservoir, located in the middle course of the Volga River, is the largest 

in Eurasia. Long-term monitoring of phytoplankton and the assessment of chlorophyll "a" 

concentration in the reservoir is carried out through a network of permanent stations [5] 

with varying frequencies, ranging from monthly to one-time or three-time observations 

between May and October in different years. Recent observations show that the timing of 

the onset of cyanobacterial blooms and their duration have changed significantly 

compared to long-term data from 1960-2000 [5-8]. Therefore, to ensure more reliable 

monitoring, an increase in the number of observations throughout the year is necessary. 

Another problem with the current situation is that the relatively small number of stations 

over the vast surface area of the Kuybyshev Reservoir does not allow for a comprehensive 

and complete understanding of the changes in chlorophyll "a" concentration and 

phytoplankton biomass over time and space. 

The intensity of algal blooms is typically assessed by measuring phytoplankton 

concentration or the concentration of its main photosynthetic pigment, chlorophyll-a (Chl 

a). Due to the high spatial and temporal heterogeneity of phytoplankton distribution across 

reservoirs and large inland water bodies—caused, in part, by wind-driven currents and 

convectional phenomena in the water column—bloom intensity indicators at individual 

stations vary greatly. As a result, relying solely on data from a limited network of stations 

on specific dates makes it difficult to evaluate the integral characteristics of phytoplankton 

in the reservoir. 

To address these challenges, remote monitoring methods can be applied. According to 

several studies [9-13], using remote sensing methods through satellite imagery can be 

effective in detecting algal bloom patches in large water bodies, tracking seasonal 

dynamics, and identifying other features of cyanobacterial mass development in various 

freshwater bodies [14]. In particular, satellite remote sensing methods can, with a certain 

degree of error, estimate Chl a concentration, biomass, and, with some limitations, the 
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composition of phytoplankton across the entire water body. Thus, remote sensing methods 

can serve as an effective tool for early warning of algal blooms and rapid monitoring of 

bloom conditions in different parts of large water bodies. 

The objective of this study was to analyze the potential of using Earth remote sensing data 

to assess cyanobacterial blooms in the Kuybyshev Reservoir. 

Monitoring of water blooms in the Kuibyshev reservoir 

Since the creation of the Kuybyshev Reservoir, periods of summer cyanobacterial blooms 

have been characteristic, but they were relatively short-lived and mostly recorded in July-

August [15]. In recent years, the duration of these blooms has increased, and from 2020 to 

2023, they were recorded at various stations from mid-June to mid-September. The 

dominant species during the cyanobacterial bloom in the Priplotinnoye stretch of the 

reservoir (Zhiguli Sea) and the Usinsky and Cheremshansky bays was, and remains, 

Aphanizomenon flos-aquae Ralfs ex Bornet & Flahault (order Nostocales), accompanied 

by Dolichospermum flos-aquae (Bornet & Flahault) P. Wacklin, L. Hoffmann & Komárek 

(order Nostocales), Microcystis aeruginosa (Kütz.) Kütz. (Chroococcales), as well as 

some other cyanobacterial species (see Fig. 2). 

  

Figure 2: The dominant species of cyanobacteria in the Kuibyshev reservoir in June 2023: 

1 – Aphanizomenon flos-aquae Ralfs ex Bornet & Flahault (Nostocales); 2 – Microcystis 

aeruginosa (Kütz.) Kütz. (Chroococcales); 3 – Pseudanabaena mucicola (Naumann & 

Huber-Pestalozzi) Schwabe (Pseudanabaenales); 4 – Dolichospermum flos-aquae (Bornet 

& Flahault) P.Wacklin, L.Hoffmann & Komárek (Nostocales). 

Phytoplankton development in the Kuybyshev Reservoir and nearby water bodies is 

measured at stationary stations, as well as by sampling at individual points. Integrated 

samples are collected from the surface to the bottom. Simultaneously with sampling, 

measurements are taken of water depth, water transparency using a Secchi disk (m), 

specific electrical conductivity (S/cm), and water temperature (°C). 
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To determine the concentration of photosynthetic pigments, water samples with volumes 

of 0.2–1 L are filtered through FPSV glass filters (Vladisart, Russia) with a nominal 

retention threshold of 1.2 µm. The seston collected on the filters is extracted with 90% 

acetone in the dark at 4°C for 24 hours. Pigment concentrations in acetone extracts are 

determined according to [16-17] and the spectral reconstruction method. 

For morphological identification and quantitative accounting of phytoplankton cells, water 

samples are fixed with formalin and processed according to standard methodology [18]. 

Species identification is carried out in accordance with [19]. 

 

Figure 3: Location of Sampling Points. 

To train and assess the quality of methods for detecting and estimating phytoplankton 

concentrations using Earth remote sensing data, 81 laboratory samples were selected. 

Samples were collected in September and October 2020, June and July 2021, as well as 

May, June, July, and September 2023. Figure 3 on the map shows the locations of the 

sampling points. The points in the Priplotinnoye stretch (Zhiguli Sea) are shown in more 

detail. 
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Satellite monitoring for phytoplankton assessment 

a. Overview of Existing Studies on Remote Sensing Data for Phytoplankton 

Analysis:  

The potential of remote sensing for assessing phytoplankton development has been 

actively researched by scientists [9-13]. In particular, several studies have documented the 

successful use of Sentinel-2 satellite data for monitoring aquatic ecosystems using 

machine learning methods. 

For instance, in the study [9], the authors used Sentinel-2 satellite data to estimate 

chlorophyll-a concentrations in Chinese water bodies using regression models. They 

applied a linear regression model, support vector machines (SVM), and Catboost. The 

models were trained on 273 laboratory measurements. The best result was achieved using 

SVM, with an r² score of 0.91 (mean squared error). Study [10] emphasized the 

importance of combining satellite data and machine learning-based estimation methods 

with field measurements to improve prediction accuracy. It was shown that Sentinel-2 

multispectral images and regression methods can effectively assess chlorophyll 

concentrations and phytoplankton biomass in the Barents Sea. In research [11], the 

authors proposed an automatic correction system to improve the accuracy of 

phytoplankton concentration estimates based on satellite images. Enhanced algorithms 

demonstrated increased prediction accuracy in water bodies under various atmospheric 

conditions. In article [12], neural network methods were used to detect phytoplankton. 

Studies [13, 20-26] also explore the use of machine learning methods for phytoplankton 

analysis. 

b. Sentinel-2 Satellites and the MSI Sensor:  

The Sentinel-2 satellite, launched as part of the European Commission's "Copernicus" 

program, is equipped with a multispectral imager (MSI), which provides imaging with 

resolutions ranging from 10 to 60 meters across 13 spectral bands. These data, collected in 

the visible, near-infrared, and shortwave infrared ranges, help detect changes on the 

Earth's surface, including vegetation, land use, and water resources. 

The first satellite, Sentinel-2A, was launched in 2015, followed by its twin, Sentinel-2B, 

in 2017. This allows for imaging every 2-3 days in mid-latitude regions, including areas 

like the Volga River and the Kuybyshev Reservoir. Sentinel-2 data enable monitoring the 

ecological state of water bodies, assessing water quality, tracking vegetation changes, and 

analyzing human impacts. 

Table 1: MSI bands and their parameters. 
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Band Resolution Central wavelength Description 

B2 10 m 490 nm Blue 

B3 10 m 560 nm Green 

B4 10 m 665 nm Red 

B5 20 m 705 nm Vegetation red edge 

B6 20 m 740 nm Vegetation red edge 

B7 20 m 783 nm Vegetation red edge 

B8 10 m 842 nm Near Infrared (NIR) 

B8a 20 m 865 nm Vegetation red edge 

B11 20 m 1610 nm Shortwave Infrared (SWIR) 

B12 20 m 2190 nm Shortwave Infrared (SWIR) 

 

c. Data Preparation for the Study:  

For the analysis of water bloom conditions, we used 10-meter and 20-meter MSI 

channels, whose characteristics are listed in Table I. Sentinel-2 data was downloaded for 

the date of water sample collection. If no images were available for the specific date, the 

closest cloud-free image to the sampling date was selected. Figure 4 shows statistics 

reflecting the number of cases where the time interval between the image date and the 

sample collection date was 0, 1, 2, and so on, days. As seen from the graph, only for 19 

out of 81 samples were we able to find an image taken on the same day. Due to the 

influence of wind and currents, even a few hours of deviation can alter the actual 

situation. 

Thus, the amount of data collected, along with temporal deviations, does not allow us to 

train a highly reliable model for the studied area. However, at this stage of the research, 

our primary interest was to obtain a rough estimate of chlorophyll-a or at least detect the 

presence of phytoplankton, so we can later expand the collection of laboratory 

observations and improve machine learning models. 

 

Figure 4: Statistics on the number of days between the laboratory measurement and the 

image. 

Experimental Investigation 
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a. Regression Models and quality measures:  

During the experiments, four regression models were examined: linear regression, Ridge 

regression, Lasso, and ElasticNet.  

Linear regression is one of the most common machine learning methods used to predict 

the values of a dependent variable (or target variable) based on one or more independent 

variables (or features). It is based on the assumption that there is a linear relationship 

between the dependent and independent variables. 

Linear regression can be expressed in a compact matrix form as follows: 

𝑌 =  𝑋𝛽 +  𝜀, 

where 𝑌 is the dependent variable (target variable), 𝛽1, 𝛽2, . . . , 𝛽𝑘 are the coefficients 

(weights) of the linear regression, 𝑥𝑖1, 𝑥𝑖2, . . . , 𝑥𝑖𝑘 are the feature values for the i-th 

observation, and 𝜀𝑖 is the error or residual for the i-th observation.  

Ridge regression is an extension of classical linear regression used to address problems of 

multicollinearity among features and improve the model's generalization ability. The main 

difference in Ridge regression is the introduction of regularization, which prevents model 

overfitting by adding a penalty for the magnitude of the regression coefficients. The 

equation for Ridge regression can be written as follows: 

�̂� = 𝑎𝑟𝑔 min
𝛽

(∑‖𝑌𝑖 −  𝑋𝑖𝛽‖ 2 +  𝜆‖𝛽‖2

𝑛

𝑖=1

) , 

where 𝑌𝑖 is the vector of dependent variables for the i-th observation (with dimensions 

𝑚 × 1), 𝑋𝑖 is the feature vector for the i-th observation (with dimensions 𝑘 × 1), 𝛽 is the 

matrix of regression coefficients (with dimensions 𝑘 × 𝑚), 𝜆 is the regularization 

parameter. 

Lasso regression is a type of linear regression that uses L1 regularization to improve 

prediction quality and address the problem of overfitting. One of the key features of Lasso 

regression is its ability to perform feature selection, making it particularly useful in tasks 

with a large number of features. Lasso can shrink the coefficients of irrelevant features to 

zero, effectively removing them from the model, which enhances interpretability and 

reduces model complexity. 

The equation for Lasso regression can be written as follows: 

�̂� = 𝑎𝑟𝑔 min
𝛽

(∑‖𝑌𝑖 −  𝑋𝑖𝛽‖ 2 +  𝜆 ∑‖𝛽𝑗‖
1

𝑘

𝑗=1

𝑛

𝑖=1

) , 
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where 𝑋𝑖 is the feature vector for the i-th observation (with dimensions 𝑘 × 1), 𝛽 is the 

matrix of regression coefficients (with dimensions 𝑘 × 𝑚, where m is the number of 

dependent variables), 𝑌𝑖 is the vector of dependent variables for the i-th observation (with 

dimensions 𝑚 × 1), ‖𝛽𝑗‖
1
 is the L1-norm of the coefficients for feature j, 𝜆 is the 

regularization parameter that controls the strength of the penalty. 

ElasticNet regression is a generalization of the Ridge and Lasso regression methods, 

combining their strengths to solve linear regression problems with regularization. This 

method is particularly useful for analyzing high-dimensional data where strong 

correlations between features exist. The main goal of ElasticNet is to improve the model’s 

robustness and interpretability, as well as to prevent overfitting. 

The loss function for ElasticNet in the multivariate case is as follows: 

�̂� = 𝑎𝑟𝑔 min
𝛽

(∑‖𝑌𝑖 −  𝑋𝛽𝑖‖2
2 +  𝜆1 ∑‖𝛽𝑖‖1

𝑚

𝑖=1

𝑚

𝑖=1

 +  𝜆2 ∑‖𝛽𝑖‖2
2

𝑚

𝑖=1

) , 

where 𝑌𝑖- is the vector of values for the i-th dependent variable, 𝛽𝑖 is the vector of 

coefficients for the i-th dependent variable, 𝜆1 и 𝜆2 are regularization parameters for each 

target column, ‖𝛽𝑖‖1 is the L1-norm for feature selection, and ‖𝛽𝑖‖2
2 is the L2-norm for 

coefficient regularization and reducing the impact of multicollinearity.. 

The quality metrics used were MSE and 𝑟². The Mean Squared Error (MSE) is a measure 

that represents the average of the squared prediction errors. It is calculated using the 

following formula: 

𝑀𝑆𝐸 =  
1

𝑁
∑(𝑦𝑖 − 𝑦�̂�)

2

𝑁

𝑖=1

, 

where 𝑁 is the number of observations, 𝑦𝑖 is the actual value, and 𝑦�̂� is the predicted value. 

MSE is used to assess the accuracy of the model, and its value is always non-negative. 

The smaller the MSE, the better the model. 

The coefficient of determination (r²) measures the proportion of the variance in the 

dependent variable that is explained by the model. It is defined as: 

𝑟2  = 1 −  
𝑆𝑆𝑟𝑒𝑠

𝑆𝑆𝑡𝑜𝑡
, 

where 𝑆𝑆𝑟𝑒𝑠 =  ∑ (𝑦𝑖 − 𝑦�̂�)
2𝑁

𝑖=1  is the sum of squared residuals, and 𝑆𝑆𝑡𝑜𝑡 = ∑ (𝑦𝑖 −𝑁
𝑖=1

�̅�)2  is the total sum of squares (with �̅� being the mean of the actual values). 

The maximum value of 𝑟² is 1, indicating a perfect model. Values of 𝑟² less than or equal 

to 0 indicate no explanatory power. 
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a. Training Regression Models:  

The sample of 81 instances was divided into training and test sets in a 4:1 ratio. 

Chlorophyll-a was predicted using 10 MSI bands. Additionally, chlorophyll-a was 

assessed separately using channel B3 and channel B8 for comparison. The results 

presented in Table II indicate that high accuracy has not yet been achieved due to the 

small size of the training dataset and differences in observation dates (as shown in Figure 

4). Nevertheless, the best model managed to estimate the desired indicator with an r² of 

0.5696, suggesting that the regression model can explain more than half of the error 

variance. It is also noteworthy that when estimating chlorophyll concentration using a 

single indicator, r² is less than 0, meaning that relying on just one channel does not yield a 

reasonably accurate estimate. 

Table 1: MSI bands and their parameters. 

Model 10 bands: MSE 10 bands: 𝒓𝟐 B3: 𝒓𝟐 B8: 𝒓𝟐 

Linear 326.41 0.570 -0.483 -0.504 

Ridge 760.57 -0.003 -0.469 -0.489 

Lasso 513.36 0.323 -0.352 -0.152 

ElasticNet 678.78 0.105 -0.301 -0.235 

 

a. Classification of the Aquatic Area Using a Larger Dataset 

Due to the lack of accurate chlorophyll-a concentration data from laboratory samples, we 

attempted to tackle the classification task—detecting phytoplankton. This task is simpler 

to solve than estimating chlorophyll-a and does not require laboratory observations, as the 

presence of blooming phytoplankton in the water column can be visually detected through 

the analysis of satellite images in the RGB or RGNir range. 

For data labeling, training classification models, and evaluating their performance, we 

obtained images of the Zhiguli Sea from August, September, and October 2020, June, 

July, and August 2021, as well as August and September 2022, and July, August, and 

September 2023. These images were aligned for resolution and offset, focusing on the 

same area, which includes the Priplotinnoye Bay (Zhiguli Sea). Using the Cvat program, 

the obtained images were visually annotated into three classes: water with clear 

phytoplankton presence, clear water, and other areas. Pixels in the first two classes formed 

the dataset used for training, validating, and testing the classification models. Figures 5-6 

show examples of images and the corresponding two masks: the phytoplankton mask and 

the water mask. 
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In the study, the XGBoost and CatBoost models were tested.  

XGBoost (Extreme Gradient Boosting) is a powerful machine learning algorithm based on 

the gradient boosting method. It was developed to enhance the performance and accuracy 

of models, as well as to handle large datasets. XGBoost includes the following key stages: 

• Tree construction: The algorithm sequentially builds decision trees, where each 

new tree is trained on the errors of the previous trees. This helps improve 

predictions and minimize error. 

• Regularization optimization: XGBoost incorporates L1 and L2 regularization, 

which helps prevent overfitting and improves the model's generalization ability. 

• Parallel computations: XGBoost implements parallel tree construction, 

significantly speeding up the training process compared to traditional gradient 

boosting methods. 

CatBoost is a machine learning algorithm developed by Yandex, specifically optimized 

for working with categorical data. CatBoost stands out for its high performance, accuracy, 

and ease of use, making it a popular choice for data analysis in various fields. CatBoost 

operates on the principle of gradient boosting, but with a focus on handling categorical 

features. 

As a result, both models showed comparable performance based on the Accuracy metric: 

89.97% for XGBoost and 89.95% for CatBoost. The classification errors were not 

significant. These results suggest the promising potential of using MSI data and machine 

learning methods for analyzing phytoplankton distribution in the conditions of the Middle 

Volga. 
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Figure 5: Figure 6.  Example of an image from July 18, 2021 (top) with masks for 

phytoplankton classes (center) and water (bottom). 

 

  

Figure 5: Example of an image from June 25, 2020 (top) with masks for phytoplankton 

classes (center) and water (bottom). 

Conclusion 

This study demonstrates the potential of using Sentinel-2 satellite data for assessing 

phytoplankton development in the Kuibyshev Reservoir. While traditional field 

measurements provide important localized data, the large surface area of the reservoir 
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limits the ability to accurately track changes in chlorophyll-a concentration and 

phytoplankton biomass over time and space. Our experiments with remote sensing data, 

combined with machine learning models, showed promising results in estimating 

chlorophyll-a concentration, particularly as the sample size increased. Additionally, 

classification models successfully predicted whether chlorophyll-a concentrations 

exceeded specific thresholds, achieving high accuracy (over 90%) in test areas. 

Despite the limitations posed by the relatively small number of field samples, our manual 

labeling experiment demonstrated that binary classification models can effectively detect 

areas with high phytoplankton concentrations. This approach paves the way for more 

comprehensive monitoring and analysis of phytoplankton distribution across time and 

space, offering valuable insights for future ecological monitoring and water management 

efforts. Expanding the dataset and refining machine learning models will further improve 

the precision of these estimations. 
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