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Abstract: Accurately estimating water quality in riverine wetlands is essential for preserving 

biodiversity, maintaining ecosystem services, protecting public health, and promoting sustainable 

environmental management. Chlorophyll-a concentration is a critical indicator of water quality, 

reflecting phytoplankton biomass and nutrient levels, and is commonly used to assess ecosystem 

health and biological productivity. This study aimed to develop and evaluate a linear regression 

model to estimate Chlorophyll-a concentrations in the Seojae-ri riverine wetland using Sentinel-2 

satellite imagery and in-situ data collected from 2019 to 2023. The study methodology involved 

dividing the data into training and testing sets, with multispectral bands from Sentinel-2 satellite 

imagery and corresponding in-situ Chlorophyll-a concentration data. To improve model accuracy, 

correlation coefficients between the in-situ Chlorophyll-a concentrations and the intensity values of 

each Sentinel-2 band were calculated. Based on these coefficients, two linear regression models were 

developed: the first used all available multispectral bands, while the second employed only the 

selected bands that showed higher correlations with in-situ Chlorophyll-a concentrations. The 

performance of both models was evaluated using statistical metrics such as Mean Absolute Error 

(MAE), Mean Squared Error (MSE), and the R² score. The second model, which used the selected 

bands, demonstrated superior performance with an R² score of 0.5898, MAE of 2.9793, and MSE of 

11.5249. In contrast, the first model, which incorporated all bands, had a lower R² score of 0.0806, 

along with higher MAE (4.1110) and MSE (25.8338). These results indicate that focusing on the 

bands with stronger correlations to in-situ Chlorophyll-a concentrations improves the predictive 

accuracy of the regression model. While the second model outperformed the first, the study recognizes 

that linear regression may not fully capture the complexity of relationships between spectral data and 

Chlorophyll-a concentrations. Future research should consider non-linear regression models, such as 

random forests or neural networks, which can better handle the non-linear interactions in such 

datasets. Additionally, incorporating data from other remote sensing platforms, including 

hyperspectral imagery, could further enhance the accuracy of Chlorophyll-a concentration estimation 

in riverine wetlands.  
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Introduction 

Assessing water quality in riverine wetlands is critical for conserving biodiversity, 

supporting ecosystem services, protecting public health, and fostering sustainable 

environmental management practices (Dudgeon et al., 2006; Mitsch and Gosselink, 2015; 

Verhoeven et al., 2006). Riverine wetlands are dynamic systems, and in-situ water quality 
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monitoring can be challenging due to their remote locations, which often limit 

accessibility, as well as the potential for human presence to disturb sensitive habitats. 

Additionally, water quality in these wetlands can fluctuate significantly due to seasonal 

and environmental changes, making regular monitoring labor-intensive and time-

consuming (Kadlec and Wallace, 2008). In recent years, satellite remote sensing has 

emerged as a valuable tool for estimating water quality parameters in such environments. 

Satellite imagery provides large-scale spatial coverage, frequent temporal data, and the 

ability to monitor water conditions without physical interference, thereby reducing the 

risks associated with traditional field sampling (Klemas, 2013; Tyler et al., 2016). 

Sentinel-2 satellite imagery, in particular, with its high resolution and multispectral 

capabilities, offers enhanced accuracy for detecting key water quality indicators like 

chlorophyll-a (Chl-a), suspended solids, and turbidity. This technology allows for 

continuous, efficient, and non-invasive monitoring of water quality in wetlands, 

contributing to more effective management and conservation strategies (Duan et al., 2019; 

Villa et al., 2014). 

Chlorophyll-a is a crucial photosynthetic pigment found in phytoplankton and is widely 

recognized as an important indicator of water quality, particularly concerning nutrient 

levels and algal biomass (Bresciani et al., 2011; USEPA (United States Environmental 

Protection Agency), 2003; Wetzel, 2001). In riverine wetlands, monitoring Chlorophyll-a 

is essential as it serves as a direct measure of phytoplankton biomass, which in turn 

reflects the nutrient status and overall ecological health of the ecosystem (Wetzel, 2001). 

Elevated levels of Chlorophyll-a often indicate nutrient enrichment or eutrophication, a 

process driven by excessive inputs of nitrogen and phosphorus that promote algal blooms. 

This can result in diminished water quality through a reduction in dissolved oxygen levels, 

which negatively impacts aquatic life and can lead to habitat degradation (Smith et al., 

1999). Tracking Chlorophyll-a concentrations is not only critical for understanding 

nutrient dynamics but also for predicting potential shifts in ecosystem function and 

services. High concentrations of this pigment can lead to hypoxia (low oxygen 

conditions), which poses serious risks to fish, macroinvertebrates, and other aquatic 

organisms (Carpenter et al., 1998). Additionally, eutrophication linked to excessive 

Chlorophyll-a can disrupt biodiversity, reduce water clarity, and harm the provisioning of 

ecosystem services such as water filtration, flood control, and carbon sequestration 

(Dodds et al., 2008; Paerl et al., 2014). Therefore, regular monitoring of Chlorophyll-a in 
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riverine wetlands is key to managing nutrient loads and maintaining ecological balance in 

these vulnerable environments. 

Remote sensing technologies have proven to be highly effective for estimating 

Chlorophyll-a concentrations in riverine wetlands and other inland water bodies due to 

their ability to provide large-scale, frequent, and non-invasive monitoring (Gitelson and 

Merzlyak, 1998). This is especially advantageous in wetlands, where accessibility is often 

limited and traditional water quality assessments can be logistically challenging 

(Matthews, 2011). Early studies utilized Landsat Thematic Mapper (TM) data for 

estimating Chlorophyll-a concentrations in inland waters, demonstrating the potential of 

satellite data for large-area water quality monitoring (Mishra et al., 2005). However, 

atmospheric interference and other factors initially posed challenges to achieving high 

accuracy. To address these limitations, subsequent research focused on refining 

atmospheric correction techniques. For example, Wang et al. (2007) used MODIS 

(Moderate Resolution Imaging Spectroradiometer) data to improve Chlorophyll-a 

estimation in both coastal and inland waters, enhancing accuracy by resolving 

atmospheric interference. Hyperion hyperspectral imagery, with its ability to capture 

detailed spectral information, was later used by Giardino et al. (2007) to assess water 

quality, offering a higher resolution for distinguishing between different water quality 

parameters, including Chlorophyll-a concentrations. In more recent years, the Sentinel-2 

satellite has emerged as a valuable tool for monitoring Chlorophyll-a, thanks to its high 

spatial and spectral resolution. Du et al. (2012) highlighted the effectiveness of Sentinel-2 

imagery for estimating Chlorophyll-a concentrations in large water bodies like rivers and 

lakes, making it a key resource for water quality management. Additionally, the 

integration of drone-based remote sensing has introduced new possibilities for monitoring 

smaller, more complex ecosystems. Zhou et al. (2012) demonstrated the use of drone-

based multispectral imagery to estimate Chlorophyll-a in wetlands, providing accurate and 

efficient data collection. Similarly, Kuhn et al. (2019) showcased the potential of 

Unmanned Aerial Vehicle (UAV) multispectral and hyperspectral imagery for estimating 

Chlorophyll-a in smaller inland water bodies, underscoring the growing role of UAVs in 

environmental monitoring. These advancements in remote sensing technologies have 

significantly improved the ability to monitor Chlorophyll-a in riverine wetlands and other 

inland waters, enabling more effective management of water quality and ecosystem 

health. 
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In this study, a linear regression model was created to estimate Chlorophyll-a 

concentrations in riverine wetlands using the multiple scenes of Sentinel-2 satellite 

imagery and in-situ data. The process involved dividing the data into training and testing 

sets, calculating correlation coefficients between in-situ Chlorophyll-a concentrations and 

the intensity values of each Sentinel-2 multispectral band, and selecting the most relevant 

bands. Two linear regression models were developed: one using all bands and another 

using only the selected bands with higher correlation coefficients to improve estimation 

accuracy. 

 

Study Area and Datasets 

In this study, the Seojae-ri riverine wetland (total area: 445,217.88 m²), located along the 

Gumho River, was selected as the study area because there is a water quality monitoring 

station (latitude: 35.885°, longitude: 128.503°) near the wetland that can continuously 

provide daily in-situ Chlorophyll-a concentration data (see Figure 1).  

 

Figure 1: Location of the Sejae-ri riverine wetland shown in Google™ map 

 

The 97 scenes of Sentinel-2 satellite imagery acquired in the study area from 2019 to 2023 

were used for obtaining the intensity values of all multispectral bands including Bands 1, 

2, 3, 4, 5, 6, 7, 8, 8A, 9, 11 and 12.  

 

Methodology 

In the first step of the proposed methodology, the in-situ Chlorophyll-a concentration data 

and the intensity values of all multispectral Sentinel-2 satellite imagery acquired in the 
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study area were divided into training and testing sets. Then, exploratory data analysis was 

conducted to examine the relationship between the in-situ Chlorophyll-a concentrations 

and the intensity values of the Sentinel-2 multispectral bands. Figure 2(a) shows the 

distribution of in-situ Chlorophyll-a concentrations, Figure 2(b) presents the correlation 

heatmap between the Chlorophyll-a concentrations and all multispectral bands, and Figure 

2(c) displays an example scatterplot of Chlorophyll-a concentrations and a single band 

(Band 1) of the Sentinel-2 imagery. 

 

(a)                                                                           (b) 

 

                                      (c) 

Figure 2: Results of the exploratory data analysis: (a) Distribution of in-situ Chlorophyll-a 

concentration density, (b) Correlation heatmap between in-situ Chlorophyll-a 

concentrations and the intensity values of the multispectral bands of the Sentinel-2 satellite 

imagery, and (c) Example scatterplot of Chlorophyll-a concentrations and a single band 

(Band 1) of the Sentinel-2 satellite imagery. 

Figure 2(a) represents the distribution of in-situ Chlorophyll-a concentrations in a riverine 

wetland, depicted as a histogram with a corresponding density curve. The x-axis shows 

the Chlorophyll-a concentrations (Chla), measured in mg/m³, while the y-axis represents 

the density, which corresponds to the frequency of these concentrations within the dataset. 
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From the figure, we observe a right-skewed distribution, indicating that the majority of 

Chlorophyll-a concentration values fall between 0 and 15 mg/m³, with the peak occurring 

near 10 mg/m³. This suggests that lower concentrations of Chlorophyll-a are more 

common in the dataset. The distribution tails off gradually, with some higher Chlorophyll-

a concentrations extending beyond 40 mg/m³, but these are relatively infrequent. The 

shape of the density curve indicates that the data is not normally distributed; instead, it has 

a positive skew. This skewness could be indicative of occasional instances of nutrient 

enrichment or eutrophication, where higher Chlorophyll-a levels are present due to 

increased phytoplankton activity. The relatively rare high concentrations suggest that 

these conditions may not be frequent in the sampled region but can occur under specific 

environmental conditions.  

Figure 2(b) epresents a correlation heatmap that shows the relationships between in-situ 

Chlorophyll-a concentrations (denoted as "Chla") and the various bands of Sentinel-2 

satellite imagery (B1, B2, B3, etc.). The correlation values are shown in the heatmap, 

where the color intensity reflects the strength of the correlation: red indicates strong 

positive correlations, and blue indicates weaker or moderate correlations. The values 

range from 0 to 1, where 1 represents a perfect positive correlation, 0 indicates no 

correlation, and negative values would reflect inverse correlations (though none are shown 

here). In Figure 2(b), Bands 4 (Red), 5 (Red-edge 1), 6 (Red-edge 2), 7 (Red-edge 3), 8 

(Near-infrared), 8a (Near-infrared narrow), 9 (Water vapor), 11 (Shortwave infrared 1), 

and 12 (Shortwave infrared 2) have higher correlation coefficients (0.4 or more) with 

Bands 1 (Coastal aerosol), 2 (Blue), and 3 (Green), respectively. 

Figure 2(c) depicts a scatterplot showing the relationship between in-situ Chlorophyll-a 

concentrations (Chla, represented on the y-axis) and the intensity values of Band 1 

(Coastal aerosol) of Sentinel-2 satellite imagery (B1, represented on the x-axis). The 

scatterplot provides a visual representation of how Chlorophyll-a concentrations vary with 

changes in the reflectance values captured by Band 1. 

The next step involved developing a linear regression model to estimate Chlorophyll-a 

concentrations, with in-situ Chlorophyll-a data as the dependent variable and the intensity 

values of the multispectral bands from 97 scenes of Sentinel-2 satellite imagery as the 

independent variables. Linear regression is one of the simplest and most widely used 

predictive models for analyzing relationships between a dependent variable and one or 

more independent variables (Freedman, 2009; Montgomery et al., 2021). It assumes a 

linear relationship between the variables and fits a straight line to model this relationship. 
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By applying this approach, the model can predict Chlorophyll-a concentrations based on 

the observed values from the multispectral satellite bands. This method's simplicity and 

interpretability make it highly suitable for environmental applications, where 

understanding the relationships between different variables is critical for effective water 

quality management. Moreover, linear regression has been successfully applied in remote 

sensing studies, especially for estimating water quality parameters like Chlorophyll-a 

(Zhou et al., 2012; Kuhn et al., 2019), offering an effective solution for monitoring 

ecological health in riverine wetlands. 

The linear regression model for estimating Chlorophyll-a concentrations in riverine 

wetlands using Sentinel-2 satellite imagery can be expressed in Equation 1 as follows: 

CHA = a0 + a1B1 + a2B2 + ….. + anBm + ε                     (1) 

Where CHA (dependent variable) represents the estimated Chlorophyll-a concentration 

(mg/m³) in the riverine wetlands, which serves as the outcome or target variable, a0 

(intercept) represents the constant term in the regression model, representing the estimated 

Chlorophyll-a concentration when all reflectance values from the selected bands are zero. 

In addition, a1,..,an (regression coefficients) represents the coefficients associated with 

each Sentinel-2 multispectral band, B1,…, Bm (independent variables) represents the 

reflectance values (intensity) from the multispectral bands of Sentinel-2, and ε represents 

the residual or error term that captures the variation in Chlorophyll-a concentrations not 

explained by the model, and the residual accounts for the random error or noise in the data, 

as well as any un-modeled relationships between the variables (Montgomery et al., 2021). 

In this step, two linear regression models were developed to estimate Chlorophyll-a 

concentrations using Sentinel-2 satellite imagery. The first model utilized all the 

multispectral bands from the Sentinel-2 imagery as independent variables to predict the 

in-situ Chlorophyll-a concentrations. In contrast, the second model was based on a subset 

of bands, specifically Bands 3 (Green), 4 (Red), 5 (Red-edge 1), 6 (Red-edge 2), 8 (Near-

Infrared), 9 (Water vapor), and 11 (Shortwave Infrared 1), which showed stronger 

correlations with in-situ Chlorophyll-a concentrations. The selection of these bands was 

informed by the correlation analysis conducted in the exploratory phase, where these 

bands exhibited higher correlation coefficients, making them more reliable predictors for 

estimating Chlorophyll-a levels (Matthews, 2011; Kuhn et al., 2019). Using these two 

models allowed for comparison of the predictive performance between using all available 
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spectral bands and a refined subset of bands, providing insight into the most efficient 

methods for water quality estimation in riverine wetlands.  

 

Results and Discussion 

Figure 3 showed the two linear regression model graphs with the training and testing sets, 

respectively. Figure 3(a) showed the first model graph with the training set, Figure 3(b) 

showed the first model graph with the testing set, Figure 3(c) showed the second model 

graph with the training set, and Figure 3(d) showed the second model graph with the 

testing set. 

 

(a)                                                                       (b) 

 

(c)                                                                       (d) 

Figure 3: Linear regression model graphs: (a) First model graph with the training set, (b) 

First model graph with the testing set, (c) Second model graph with the training set, and 

(d) Second model graph with the testing set 

To evaluate the performance of a linear regression model, several key metrics are 

commonly used, including Mean Absolute Error (MAE), Mean Squared Error (MSE), and 

the R² score (coefficient of determination) (Kutner et al., 2004; Montgomery et al., 2021). 
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These metrics provide a comprehensive assessment of the model’s predictive accuracy. 

Mean Squared Error (MSE) is the average of the squared differences between the actual 

values and the predicted values of Chlorophyll-a concentrations. This metric gives more 

weight to larger errors, making it sensitive to outliers. A lower MSE indicates better 

model performance, as it reflects smaller prediction errors. Mean Absolute Error (MAE), 

on the other hand, is the average of the absolute differences between actual and predicted 

values. Unlike MSE, it treats all errors equally, providing a more straightforward 

interpretation of the average prediction error without amplifying larger deviations. A 

lower MAE suggests that the model predictions are closer to the actual values. The R² 

score, also known as the coefficient of determination, measures the proportion of variance 

in the dependent variable (Chlorophyll-a concentrations) that can be explained by the 

independent variables (Sentinel-2 multispectral bands). R² ranges from 0 to 1, where a 

higher score indicates a better fit of the model. An R² score of 1 represents a perfect fit, 

while a score closer to 0 indicates that the model fails to explain the variance in the data 

(Kutner et al., 2004). In this study, Table 1 presents the statistical results of MAE, MSE, 

and R² scores for the two developed linear regression models using both the training and 

testing datasets. These metrics provide valuable insight into the accuracy and reliability of 

the models. 

 Table 1: Statistical results of the two linear regression model with the training and testing 

sets 

 

The table presents the statistical results of two linear regression models used to estimate 

Chlorophyll-a concentrations, evaluated using the Mean Absolute Error (MAE), Mean 

Squared Error (MSE), and R² score for both the training and testing datasets. These metrics 

provide insight into the models' performance and predictive accuracy. Starting with the first 

model, the MAE and MSE for the training set are 6.8373 and 71.8562, respectively, with an 

R² score of 0.4591. This suggests that the model explains approximately 46% of the variance 

in the training data, indicating a moderate fit. However, when applied to the testing set, the 

model’s performance significantly deteriorates. The MAE drops to 4.1110, and the MSE 

Types of Linear a Regression 

Model  

MAE MSE R
2
 

Score 

First model with the training set 6.8373 71.8562 0.4591 

First model with the testing set 4.1110 25.8338 0.0806 

Second model with the training set 6.9635 77.7798 0.4145 

Second model with the testing set 2.9793 11.5249 0.5898 
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decreases to 25.8338, but the R² score plummets to 0.0806. This low R² indicates that the 

model explains only about 8% of the variance in the testing set, revealing poor generalization 

to new data. The relatively low MSE in the testing set suggests that while prediction errors 

are lower, the model may be overfitting the training data, failing to capture the underlying 

patterns effectively for the testing set (Kutner et al., 2004). In contrast, the second model, 

which uses a subset of selected bands, performs more consistently. For the training set, the 

MAE and MSE are slightly higher than the first model, at 6.9635 and 77.7798, respectively, 

with an R² score of 0.4145. Although this indicates a slightly worse fit compared to the first 

model, the second model shows a much stronger performance when tested on the testing set. 

The MAE significantly improves to 2.9793, and the MSE drops to 11.5249. Most notably, the 

R² score increases to 0.5898, meaning that the second model explains approximately 59% of 

the variance in the testing set, a substantial improvement over the first model. These results 

indicate that the second model generalizes better to new, unseen data. Despite slightly higher 

errors in the training set, the second model's ability to capture the relationship between 

Chlorophyll-a concentrations and the Sentinel-2 bands in the testing set demonstrates its 

robustness. The improved performance on the testing set suggests that selecting bands with 

higher correlations to Chlorophyll-a concentrations results in a more reliable predictive 

model. This highlights the importance of feature selection in regression models to avoid 

overfitting and improve generalization (Montgomery et al., 2021).  

 

Conclusion and Recommendation  

In this research, two linear regression models were developed to estimate Chlorophyll-a 

concentrations in the Seojae-ri riverine wetland using Sentinel-2 satellite imagery. The 

first model used all available multispectral bands, while the second model was based on 

selected bands that demonstrated higher correlation coefficients with in-situ Chlorophyll-a 

concentrations. The statistical results showed that the model utilizing the selected bands 

significantly outperformed the model using all bands. Specifically, the second model 

demonstrated better predictive accuracy, as indicated by lower Mean Absolute Error 

(MAE) and Mean Squared Error (MSE), along with a higher R² score, particularly when 

tested on unseen data. These results suggest that selecting bands with stronger correlations 

to Chlorophyll-a concentrations improves the model’s ability to generalize and estimate 

water quality more effectively (Montgomery et al., 2021). This research contributes to the 

field of water quality monitoring by demonstrating the feasibility of estimating 

Chlorophyll-a concentrations in riverine wetlands using remote sensing data from 
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Sentinel-2. The ability to estimate these concentrations without human access to the 

wetland offers significant advantages, particularly for large or inaccessible areas. Sentinel-

2 imagery provides non-invasive, frequent, and wide-scale monitoring, which is essential 

for tracking dynamic ecosystems like wetlands (Matthews, 2011). However, the results 

also revealed limitations in the linear regression models. As depicted in Figure 3, the 

models were limited in their ability to capture the complex, non-linear relationships 

between Chlorophyll-a concentrations and the multispectral band intensities. Linear 

regression assumes a simple, linear relationship, which may not fully account for the 

intricate interactions between the variables, particularly in natural ecosystems where 

environmental factors can influence spectral readings. Moreover, the model’s sensitivity to 

outliers and noise suggests that more advanced techniques may be required to improve 

accuracy and robustness (Kutner et al., 2004). To address these limitations, future research 

should explore more sophisticated machine learning algorithms such as random forests, 

support vector machines, or neural networks, which are better suited for capturing non-

linear relationships. Additionally, incorporating other remote sensing data, such as higher 

resolution imagery or integrating data from different sensors, could further improve the 

accuracy of Chlorophyll-a estimation. Finally, future work could focus on expanding the 

study area to include various types of wetlands and water bodies, enhancing the model’s 

generalizability and application in diverse environmental contexts (Montgomery et al., 

2021). 
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