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Abstract             

Meteorological weather radar is a vital instrument in the study of atmospheric conditions and 

weather forecasting. It plays a particularly significant role in spatial rainfall estimation, especially in 

areas lacking ground-based rain gauge stations. However, radar-derived rainfall estimates often 

exhibit discrepancies when compared to measurements from ground stations, a phenomenon referred 

to as bias. The variability of this bias is influenced by several factors, including the Z-R relationship, 

topography, storm characteristics, and seasonality. Additionally, the complexity of radar data 

processing, which requires advanced programming skills, poses a challenge to the spatial analysis of 

radar data. This research utilized C-band weather radar data from the Thai Meteorological 

Department, focusing on the central region of Thailand during the 2018 monsoon season, which was 

affected by Tropical Storm SON-TINH. The preliminary data processing was conducted using open-

source radar libraries. The study aimed to compare spatial bias using the Marshall-Palmer Z-R 

relationship (Z = 200R
1.6

) against ground-based rainfall data at hourly intervals. The methodology 

for processing and analyzing spatial bias was implemented using Geographic Information System 

(GIS) software. Furthermore, the study tested spatial bias correction using the Inverse Distance 

Weighting (IDW) method. The corrected data were then analyzed using statistical measures such as 

RMSE, MAE, and MFB to assess the effectiveness of the bias correction methods over different time 

intervals. The results indicated that MFB correction effectively reduced the discrepancies between 

radar and ground-based rainfall estimates across all time periods, particularly in shorter intervals. In 

contrast, the IDW method was found to significantly reduce the bias in radar-derived cumulative 

rainfall over longer periods. Validation using RMSE and MAE statistics confirmed that both methods 

enhanced the accuracy of radar-based rainfall estimates. 

Keywords: Ground-based weather radar, Spatial Bias, Spatial Statistics, Thailand, Z-R 

Relationship  
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1. Introduction 

  

Water is the most important resource for human life and social development 

worldwide. It is not only the source of life but also a critical component in both consumption 

and production. Water usage in agriculture is a key factor in economic development and 

human well-being. The amount of water used in cultivation and animal husbandry 

significantly influences the quality and quantity of yield. Therefore, increasing agricultural 

productivity sustainably relies on efficient water resource management and innovative 

approaches to enhance water use efficiency. However, climate change has exacerbated issues 

such as more frequent and severe floods, droughts, mudslides, and soil erosion. Additionally, 

the growth of urban communities and the expansion of industry have worsened water quality 

problems (National Water Resources Agency, 2018). In Thailand, multiple agencies are 

involved in water resource management and disaster prevention, making it essential to 

accurately forecast rainfall in specific areas and times. Currently, rainfall measurement in 

Thailand is conducted using both automatic and manual ground-based rain gauges across the 

country. However, these may be insufficient, particularly in mountainous, hilly, and hard-to-

reach areas. Sucharit et al. (2007) noted that ground rain gauges measure rainfall at a specific 

location in units such as millimeters per hour (mm/hr) or inches per hour. While this method 

can be highly accurate, it is not without flaws. Equipment may be incomplete or damaged, the 

installation site may be obstructed by trees or buildings, and the cost of measuring equipment 

can be high. Furthermore, since these gauges measure rainfall only at specific locations, they 

do not provide information about actual rainfall in surrounding areas where there are no 

measuring stations. Therefore, while the rainfall data obtained from these gauges is generally 

reliable, it has limitations compared to other measurement methods. 

In addition to measuring rainfall using ground rain gauges, various tools are available for 

weather monitoring, including meteorological satellites and ground-based weather radar 

stations. These tools have gained widespread use. However, they also come with limitations. 

For example, satellite-based weather monitoring requires multiple satellites to cover specific 

areas, and the frequency of data collection can be limited. As a result, rainfall data obtained 

from satellite estimates are often higher than those measured by ground rain gauges 

(Nattapon Mahavik, 2019). Rainfall data can also be estimated from reflectivity values 

captured by ground-based weather radars, which offer both spatial and temporal resolutions 

suitable for small and medium-sized areas. This method provides reliable and relatively 

efficient rainfall estimates. Despite these advantages, there are limitations associated with 
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estimating rainfall from radar reflectivity values. For instance, ground clutter, such as 

buildings, trees, noise from transmission towers, aircraft, and terrain features, can interfere 

with data accuracy. Additionally, data obtained from satellites and ground-based radars often 

overestimate actual rainfall compared to measurements from ground-based rain gauges. 

Therefore, it is essential to adjust these discrepancies to ensure the data aligns more closely 

with reality. 

The objective of this research is to utilize precipitation estimates from the Meteorological 

Department's ground-based weather radar, specifically from the Phitsanulok Radar Station, to 

study and correct the spatial differences between radar-estimated rainfall and ground-

measured rainfall. The Z-R correlation developed by Marshall et al. (1955) will be applied to 

compare radar estimates with ground rain data provided by the Institute of Water Resources 

Information (Public Organization) during Tropical Storm SON-TINH. The analysis will be 

conducted using geographic knowledge to identify a spatial estimation method that reduces 

the spatial difference in radar rainfall estimates. The Inverse Distance Weighted (IDW) 

method will be employed, and the results will be verified using statistical metrics such as 

Mean Field Bias (MFB), Root Mean Squared Error (RMSE), and Mean Absolute Error 

(MAE). Quality improvements to the radar data will be done using an open-source radar 

library. 

2. Study and Information Area 
 

The radar is located in the lower northern region of Thailand at geographical 

coordinates 16°46'30.358" N latitude and 100°13'4.312" E longitude, at an altitude of                          

47 meters. The area covered by the radar includes a diverse range of terrains, from the central 

and southern floodplains to the surrounding mountainous regions in the west, north, and east. 

The radar coverage area also encompasses several significant river basins within the Chao 

Phraya River basin, including the Ping River basin and the Wang River basin. According to 

Mahavik & Tantanee (2019), during the southwest monsoon season, which spans from May 

to mid-October, the region experiences a substantial increase in rainfall. The southwest 

monsoon brings moisture from the ocean to the land, resulting in storms and heavy rains 

throughout Southeast Asia, including Thailand. This study utilizes radar data from Tropical 

Storm "SON-TINH" in 2018. The data in our study area have been processed and analyzed, 

as shown in Figure 1.        
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Figure 1: Map of study area (a) Map of Thailand (b) Map of the Observation Area of the 

Phitsanulok Weather Radar Station. The map displays the observation area of the Phitsanulok 

Weather Radar Station, which has a radius of 120 kilometers.  

3. Tools and data used in the study 
 

3.1 Tools Used 

Table 1:  Tools and software used in the research 

Tools & Software meaning 

1. QGIS Geographic Information 

Program V.3.32 Lima 

Open-source software used to analyze and 

visualize geographic data. 

2. Miniconda3 Program Python Open-Source Software and 

Packages Install the necessary libraries for 

analyzing radar data. 

3. Integrated Data Viewer (IDV) V.6.0u1 It uses two-dimensional display of radar and 

climate data. 3D & Animation 

4. Python language and open-code radar 

libraries Py-Art, Wradlib and other 

libraries such as Numpy, geopandas, 

Scipy, Wradlib, seaborn, rasterio 

cartopy and matplotlib 

Radar Library Radar Data Analysis and 

Libraries for Spatial Data Management and 

Analysis Math calculations, graphs and maps. 
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3.2 data 

The data utilized for this analysis consisted of meteorological radar data from the 

Phitsanulok Weather Radar Station, managed by the Department of Meteorology. The radar 

has a coverage radius of 240 kilometers and operates with a first elevation angle of 0.5 

degrees. All analyses were performed using data in Universal Time Coordinate (UTC), with 

rainfall and location data obtained from the auto-telemetry stations of the Water Resources 

Information Institute (Public Organization). The data was retrieved via an API from the 

following link: https://tiservice.hii.or.th/opendata/ data_catalog/0station_metadata.csv, in 

CSV format. The study focused on data collected during Tropical Storm SON-TINH on July 

17, 2018, adjusted to Thailand local time. Additionally, a numerical elevation model from the 

United States Geological Survey (USGS) was used, featuring a spatial resolution of 90 

meters. 

 

4. Study methods 

 

4.1 Operating Procedure 
 

As seen in Figure 2, gathering data was the process's initial stage. The TMD-operated 

Phitsanulok Weather Radar Station provided the meteorological radar data. Every 15 

minutes, the station collected four consecutive observations at a 0.5-degree elevation angle. 

Data were recorded in Universal Format (UF) format in UTC. The research team developed a 

Python script to retrieve this data via an API and store it in CSV format, adjusted to Thailand 

local time. To ensure accurate alignment with other datasets, the radar file timestamps were 

converted from UTC to local time. Additionally, Digital Elevation Model (DEM) data with a 

spatial resolution of 90 meters was downloaded from the USGS. This DEM data was 

imported into a Geographic Information System (GIS) and clipped to match the coverage 

area of the weather radar. 

Data processing was done in the second step. To assess terrain-induced radar beam occlusion, 

the Wradlib open-source radar package (Heistermann et al., 2013) was utilized in conjunction 

with the DEM data. The radar data was then transformed from the polar coordinate system to 

the Cartesian coordinate system. Constant Altitude Plan Position Indicator (CAPPI) radar 

data was generated at an altitude of 2 kilometers, with a 0.5-degree elevation angle, at 15-

minute intervals, resulting in four files (00, 15, 30, and 45 minutes) for the duration of 

https://tiservice.hii.or.th/opendata/
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Tropical Storm SON-TINH. These files were exported in GeoTIFF format for further 

analysis using open-source geospatial software. 

Data analysis was done in the third step. To enable comparison with rainfall data derived 

from ground observations, reflectivity data has been converted into rainfall rates by applying 

the Z-R relationship, which was first developed by Marshall et al. (1955). This ground-based 

data was then used in a bias correction process to refine the estimated rainfall rates. Lastly, 

spatial estimation was conducted using the bias-corrected rainfall data. 

 

Figure 2: Research Conceptual Framework 

 

4.2 Radar Data Correction with Open Code Library 

Beam Blockage Analysis: This analysis utilizes DEM in combination with an open-

source radar library. Mahavik & Tantanee (2019) employed the Wradlib software to 

investigate the physical properties of convective clouds. By analyzing radar data from the 

Phetchabun Station during the southwest monsoon season, they generated CAPPI radar map 

at an altitude of 3 kilometers. Furthermore, they developed a tracking method to gather 

physical statistics on convective clouds. This approach is essential for assessing radar quality, 

as terrain-induced beam blockage can significantly affect the accuracy of radar 

measurements. For instance, Figure 3 demonstrates how terrain in the northwest, particularly 

the area surrounding Ramkhamhaeng National Park in Sukhothai Province, completely 

obstructs the radar beam. 
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Figure 3: Proportion of the obscuration of the first lift angle radar beam of the Phitsanulok 

radar station considered together with Digital Elevation Model (DEM) 

 

Ground Clutter Removal: Ground clutter refers to signal contamination from non-

meteorological objects, such as buildings and other structures, that interfere with radar 

reflectivity data. This contamination can introduce bias into reflectivity measurements, 

leading to inaccurate data. To mitigate this, it is essential to filter out contaminated signals 

(Mahavik, 2022). The Py-ART library is employed to remove ground noise and unwanted 

data (Helmus & Collis, 2016). In experiments, Signal to Noise Ratio (SNR) of less than 1 

indicates low signal quality, while an SNR above 70 may still be affected by noise or errors. 

Figure 4 illustrates how creating a new field for comparison allows Py-ART to evaluate data 

before and after filtering. The use of doorstep filters effectively removes low-quality data 

from the dataset. Assessing the SNR value is a widely accepted method for determining 

signal quality. 
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Figure 4: Example code from SNR 

Attenuation Correction: The attenuation of radar signals caused by atmospheric gases 

is a critical factor affecting the accuracy of meteorological measurements. This attenuation 

depends on the radar wavelength and the altitude of the measurement, as atmospheric 

components such as gases, cloud water droplets, raindrops, snow, and hail can absorb and 

scatter radar energy (Mahavik, 2022). To address this issue, it is essential to apply a 

correction process based on standard atmospheric refraction assumptions. For this study, the 

open-source radar library Py-ART was used to perform attenuation correction, as shown in 

Figure 5. C-band radar systems are particularly prone to signal attenuation over distance and 

through meteorological objects, which can degrade signal strength. If attenuation is not 

corrected before estimating rainfall using the Z-R relationship, the resulting rainfall estimate 

may be lower than the actual value, leading to an underestimation of precipitation (Mahavik, 

2022). 

 

Figure 5: Example of noise filtering code using SNR 

 

4.3 Data Analysis 
 

 Calculate the Z-R Correlation: The Z-R correlation is used to relate the radar 

reflectivity factor (Z) to rainfall intensity (R). Radar reflectivity measures the intensity of 

waves reflected from raindrops in the air, but this does not directly translate to the amount of 

rain falling to the ground, unlike measurements from ground-based rainfall stations. 

Therefore, the radar reflectivity values (measured in dBZ) need to be converted to rainfall 
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intensity using the Z-R relationship. This relationship describes how the radar reflectivity 

factor correlates with the distribution of rainfall. The Z-R relationship can be expressed as 

follows (Nattapon Mahavik, 2022). 

 

Where Z represents the radar reflectivity factor in units of mm⁶/m³, and R denotes the rainfall 

intensity in mm/hr. The constants a and b are coefficients that depend on the distribution of 

raindrop sizes and vary based on factors such as the type of rainfall, geographic location, time 

of day, and season. 

Mean field bias (MFB) ratio of the average of the measured rainfall from radar to the 

average value of rainfall measured by rain meters. Determining the multiplier factor is used 

to evaluate and improve the accuracy of rainfall measurements from radar compared to 

measurements from rain meters, allowing for better calibration and bias reduction (Makmi & 

Mapiam, P. P., 2020). 

 

Root Mean Square Error (RMSE) is a measure of the difference between predicted values 

and observed values by calculating the difference between the predicted value and the actual 

value and finding the average of that difference (Mahavik, 2017). 

 

Mean Absolute Error (MAE) means that it is the average of the absolute difference between 

a predicted or predicted value and an actual value.  

 

Where Given that Gi is the actual measured rainfall value in the sample at i (mm), Ri is the 

estimated rain value of the radar (mm) n is the total number of measuring stations.  
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Spatial interpolation in meteorological data is used to correct the bias in radar rainfall 

estimates. In areas where data are insufficient or unavailable, nearby values are used to 

estimate missing data through mathematical equations. In this study, the local interpolation 

method, as described by Chang (2002), was applied. This method places greater weight on 

nearby data points, allowing them to exert more influence on the estimated values. 

5. Results 
 

5.1 Radar Data Correction  
 

 With the Py-ART open-source radar library, we provide the preliminary results of 

radar data correction. The radar data shown in Figure 6a shows the station's surroundings to 

be significantly affected by ground noise before it was filtered out. As Figure 3 illustrates, 

100% beam blockage at Ramkhamhaeng National Park (Sukhothai province) also results in 

high reflectivity values in the northwest.  

 

Figure 6: Pre-processing radar data results (a) Raw reflectivity image (b) Proportional value 

between signal value and noise value) (c) Image before filtering with SNR (d) Image after 

filtering with SNR 
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To address these issues, SNR was used to differentiate high signal values originating from the 

Earth's surface, up to an altitude of 15,000 meters. Figure 6b provides an example during 

Tropical Storm SON-TINH on July 17, 2018, from 07:00 to 07:45 UTC (14:00 to 14:45 local 

time in Thailand). The analysis revealed significant contamination at both the lowest and 

highest reflectivity levels. As depicted in Figure 5, Python scripts were employed to filter out 

ground noise and remove unwanted data. The results indicated that an SNR below 1 signifies 

low signal quality, while an SNR above 70 is optimal for radar data filtering during the 

Tropical Storm SON-TINH event, ensuring the preservation of the maximum rainfall area. 

Figure 6d shows that, after applying these filters, the ratio of signal to noise around the radar 

station was substantially reduced, and the abnormal reflectivity values were eliminated. 

Additionally, reflectivity values that were higher than actual observations were removed, 

improving the accuracy of the radar reflectivity data. 

Adjusting Signal Attenuation Using the Py-ART Open-Source Library: Figure 7a 

presents the collected radar parameters, including azimuth angle, elevation angle, range, and 

tilt angle, as well as radar reflectivity values in dBZ. These factors contribute to signal 

attenuation, resulting in a weaker signal than the actual reflectivity. Thus, it is necessary to 

correct for signal attenuation before proceeding with further analysis. After applying 

attenuation correction, as shown in Figure 7b, areas affected by signal attenuation, 

particularly those farther from the radar station, exhibit increased reflectivity values, 

providing more accurate data for subsequent analysis. 

 

Figure 7: Adjusting Signal Attenuation (a) before attenuation correction (b) after Attenuation 

correction 
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Next, the radar data are converted from the polar coordinate system to the Cartesian grid 

coordinate system. The coordinates are subsequently adjusted and exported into a format 

compatible with spatial analysis in GIS. The output from the Wradlib function is used to 

transform the data into Cartesian grid coordinates, utilizing the WGS84 datum, an 

international standard for geographic coordinates, as illustrated in Figure 8.     

 

Figure 8: Results of Conversion of Coordinates from Polar Coordinate System to Cartesian 

Coordinate System 

5.2 Development of Radar Analysis Process in GIS System   
 

 Calculation of Hourly Accumulated Rainfall: A model was developed using QGIS, an 

free and open-source software, to process radar data for calculating accumulated rainfall. This 

model was chosen due to the large volume of data involved, as shown in Figure 9. Rainfall 

intensity (Z) is derived from the Z-R Marshall-Palmer relationship, represented by the 

equation Z = aR
b
, with default parameters set to a = 200 and b=1.6 CAPPI data at a height of 

2 kilometers were used, and calculations were performed every 15 minutes (00, 15, 30, and 

45 minutes) using the Raster Calculator command. The 15-minute rainfall values were 

summed to compute the hourly accumulated rainfall, and the Cell Statistics command was 

used to calculate daily accumulated rainfall. To ensure accurate daily accumulation, at least 

80% of the data (equivalent to 19 hours) was required for the calculation. 

A set of maps in Figure 10 show the conversion of rainfall intensity (R) to radar reflectivity 

(Z) on July 17, 2018. At (a) 07:00 UTC, (b) 07:15 UTC, (c) 07:30 UTC, and (d) 07:45 UTC, 

the maps show the intensity of the rainfall. Rain clusters with a southeasterly origin started to 
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move into the 120-kilometer study region, according to observations obtained by the 

Phitsanulok weather radar station. 

The accumulated rainfall calculations for Tropical Storm SON-TINH on July 17, 2018, are 

shown in Figure 11. It is evident from the data in Figure 11 that the 120-kilometer radius 

around the watershed is not completely covered by the 1-hour accumulation of rainfall. 

 

Figure 9: Hour accumulate rainfall calculation model using Z-R relationship 

 

Figure 10: Results of Radar Reflection (Z) Conversion to Rainfall Intensity (R) of Tropical 

Storm SON-TINH On July 17, 2018, Phitsanulok Weather Radar Station (A) Rainfall 

intensity at 07:00 UTC (b) Rainfall intensity at 07:15 UTC (c) Rainfall intensity at 07:30 

UTC (d) Rainfall intensity at 07:45 UTC 
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Figure 11: Map of hourly rainfall accumulation from the Z-R relationship of Tropical Storm 

SON-TINH. On July 17, 2018, Phitsanulok Weather Radar Station (a) 1-hour cumulative rain 

map from 07.00-07.45 UTC (b) 3-hour cumulative rain map from 06.00-08.45 UTC (c) 24-

hour cumulative rain map from 00.00-23.45 UTC (c) location map of 67 test stations and 29 

monitoring stations 

5.3 Spatial Differences Correction 
 

Using data from Tropical Storm SON-TINH on July 17, 2018, during its tropical 

storm phase with strengthened conditions and wind speeds ranging from 35 to 40 kilometers 

per hour, hourly bias correction was carried out. Spatial variation analysis was conducted for 

this particular time frame. At intervals of 1, 3, 6, 9, 12, and 24 hours, ground-based rainfall 

data and estimations derived from radar were compared. For this correction process, 

automatic weather stations from a total of 96 locations within a 120-kilometer radius of the 

Phitsanulok radar station were randomly selected using QGIS software. These stations were 

divided into test stations (70% of the total, represented by black circles in Figure 11c, 

comprising 67 stations) and validation stations (30% of the total, represented by blue squares 

in Figure 11c, comprising 29 stations). Rainfall data from the test stations were extracted for 
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the same time intervals: 1, 3, 6, 9, 12, and 24 hours. Ground-based rainfall data, formatted in 

CSV files for Thailand's local time, was matched with radar-based rainfall estimates. A 

criterion was set to include only rainfall measurements greater than 0, ensuring consistency 

between radar and ground-based data. Figure 12a provides an example of the 24-hour 

accumulated rainfall results, while Table 2 presents the calculated bias between radar and 

ground-based measurements. 

 

Figure 12: Map of the Spatial Differences Correction Process (a) 24-hour accumulated 

rainfall map for the period from 00:00 to 23:45 UTC. (b) Extracted results and differences at 

the test station locations. (c) Spatial interpolation results using Inverse Distance Weighting 

(IDW).                (d) Results of the spatial differences correction. 

Radar rainfall measurements from some stations produce values higher than ground-based 

measurements, while others produce lower values, resulting in station-specific biases. To 

address this, it is necessary to adjust the radar data to align with ground-based observations. 

This adjustment was performed using spatial interpolation with the Inverse Distance 

Weighting (IDW) method, as illustrated in Figure 12c. The spatial interpolation results, 

derived from the bias values, were then used to correct MFB. Radar rainfall data were 
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multiplied by the values obtained from the spatial interpolation, as depicted in Figure 12d, to 

make the radar measurements consistent with ground-based rainfall observations. As shown 

in Table 2, radar rainfall estimates at intervals of 1, 3, 6, 9, 12, and 24 hours were consistently 

higher than ground-based measurements. The bias values, derived from comparing radar and 

ground-based rainfall, varied by time interval, with the highest bias of 0.32 occurring at the 1-

hour interval (07:00 UTC) and the lowest bias of 0.21 at the 24-hour interval (00:00–23:45 

UTC). This discrepancy suggests that radar-derived rainfall estimates over shorter time 

intervals tend to be less accurate compared to longer intervals. After correction using MFB 

method, radar rainfall values more closely matched ground-based measurements across all 

intervals, demonstrating the effectiveness of MFB correction in reducing discrepancies in 

radar data. 

Table 2: Adjustment of Mean Field Bias (MFB) 

Accumulated 

rainfall 
Time (UTC) 

Rain radar 

(mm) 

Rain gauge 

(mm) 

Bias 

(mm) 

MFB 

(mm) 

1 hour 07.00 106.03 33.60 0.32 33.60 

3 hours 06.00 – 08.45 533.02 118.00 0.22 118.00 

6 hours 06.00 – 11.45 998.92 248.80 0.25 248.80 

9 hours 06.00 – 14.45 1,306.84 300.60 0.23 300.60 

12 hours 06.00 – 17.45 1,696.92 372.40 0.22 372.40 

24 hours 00.00 – 23.45 2,917.70 604.40 0.21 604.40 

 

To verify our method, we have employed evaluation metrics. To extract values at locations 

both before and after bias correction, a total of 29 stations, or 30% of the stations, were used 

in the validation process. The bias correction's results are shown in Figures 12c and 12d. As 

shown in Table 3, the differences between ground-based rainfall measurements from the 

validation stations and radar-estimated rainfall, both before and after correction, were 

analyzed for time intervals of 1, 3, 6, 9, 12, and 24 hours. Before correction, bias values 

ranged from 2.10 mm for the 3-hour interval to 5.12 mm for the 6-hour interval, indicating 

significant deviations in rainfall estimates from uncorrected radar data. After applying the 

bias correction, the calculated rainfall values more closely aligned with ground-based 

measurements. Post-correction bias ranged from 24.63 mm for the 1-hour interval to 252.26 

mm for the 24-hour interval, reflecting improved accuracy following correction. The largest 
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pre-correction bias occurred at the 6-hour interval (5.12 mm), while the smallest occurred at 

the 3-hour interval (2.10 mm). 

The accuracy of the correction was further validated using RMSE and MAE, as shown in 

Table 4. It was observed that for the 1-hour interval, RMSE and MAE increased after 

correction, with RMSE rising from 1.03 to 9.22 and MAE increasing from 3.69 to 4.61. 

However, for longer intervals (3 to 24 hours), the IDW correction method significantly 

reduced RMSE and MAE. For example, at the 24-hour interval, RMSE decreased from 68.50 

to 0.57, and MAE dropped from 19.00 to 0.16. These results indicate that the IDW method 

effectively corrects discrepancies between radar and ground-based rainfall measurements, 

particularly over extended time periods. 

Table 3:  Results Before and After Bias Correction Using Validation Stations 

Accumulated 

rain 
Time (UTC) 

Rain gauge 

(mm) 

Bias Before 

Correction 

(mm) 

Bias After 

Correction 

(mm) 

1 hour 07.00 6.20 4.13 24.63 

3 hours 06.00 – 08.45 45.00 2.10 26.68 

6 hours 06.00 – 11.45 127.60 5.12 160.90 

9 hours 06.00 – 14.45 144.20 4.15 208.29 

12 hours 06.00 – 17.45 200.80 3.92 251.45 

24 hours 00.00 – 23.45 250.20 3.23 252.26 

    

Table 4: Statistic Values Before and After Adjustment Using the IDW Spatial Interpolation 

Method 

Z-R Relationship 

Marshall-Palmer 

(Z=200R
1.6

) 

Before Correction After correction 

RMSE MAE RMSE MAE 

1 hour 1.03 3.69 9.22 4.61 

3 hours 19.18 8.58 8.19 3.66 

6 hours 32.74 8.75 8.90 2.38 

9 hours 37.43 10.00 17.13 4.58 

12 hours 54.60 15.14 14.05 3.90 

24 hours 68.50 19.00 0.57 0.16 
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6. Conclusion 
 

During the SON-TINH storm over the middle of Thailand, we investigated into bias 

correction. Accurate radar data can be obtained by using open-source radar libraries that 

reduce ground clutter and adjust for signal attenuation. By eliminating non-meteorological 

targets, such as aircraft, buildings, and terrain features, and correcting measurement errors, 

the quality and reliability of radar data are significantly enhanced, ensuring a more accurate 

representation of meteorological conditions. MFB correction is an effective approach for 

reducing bias in radar data compared to ground-based rainfall measurements. MFB has been 

shown to significantly decrease bias across various time intervals, bringing radar-based 

rainfall estimates closer to those of ground measurements. The reduction in bias after 

applying MFB demonstrates its effectiveness in refining radar rainfall estimates. IDW 

method is used for spatial interpolation, where values from nearby locations are weighted 

based on their distance to unsampled points. This method has been shown to significantly 

reduce RMSE and MAE, especially over longer time intervals. The reduction in these error 

metrics indicates that IDW effectively improves radar data accuracy when compared to 

ground-based rainfall measurements. The future work should involve increasing the number 

of events and experimenting with other spatial bias correction methods, such as Kriging, by 

comparing variations in topography. 
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