
                                                             Asian Conference on Remote Sensing (ACRS 2024)  

Page 1 of 18 
 

 Real-time 3D Mapping of Construction Sites  

Using ORB SLAM and Stereo Cameras   
 

Ishiguro, R.1*, Susaki, J.
2
, and Ishii, Y.

3 

1 Student, Graduate School of Engineering, Kyoto University, Japan  

2 Professor, Graduate School of Engineering, Kyoto University, Japan 

3 Professor, Graduate School of Management, Kyoto University, Japan 

4
Assistant Professor, Graduate School of Engineering, Kyoto University, Japan 

*ishiguro.ryunosuke.62w@st.kyoto-u.ac.jp (*Corresponding author’s email only) 

Abstract In this paper, we developed a method to create a 3D map in real time using a stereo camera 

attached to a drone and ORB SLAM. ORB SLAM is a technology that simultaneously estimates the 

self-location and generates a 3D point cloud of the surrounding environment in real time. The 3D 

point cloud generated by ORB SLAM is sparse and cannot be used to automate crane operation. 

Therefore, it is necessary to convert the sparse point cloud into a dense point cloud. MVS is generally 

used to convert a sparse point cloud into a dense point cloud, but MVS often requires a huge amount 

of time for calculation and is not applicable to this case where real-time processing is required. This 

method consists of three processes. The first is a process to generate a dense 3D point cloud using a 

stereo camera each time. The second is a process to complement the self-estimation of the camera 

position and orientation and integrate the point clouds. The third is a process to filter the integrated 

point cloud. Outliers are removed from the point cloud generated by the first two processes. In this 

method, data obtained from a drone moving on a simulator was used. The simulator includes 

buildings, cranes, trucks, etc. to simulate an actual construction site. Evaluations on a video of 

approximately 4,500 frames show that the proposed method achieves the following results in real time 

and with high accuracy. It takes 25 seconds to create the 3D point cloud, processing approximately 

180 images per second. The final generated 3D point cloud also correctly represents the unevenness 

of the side of the building at the construction site, as well as the overall shape and scale of the box. It 

is necessary to develop a system that can accurately represent the ever-changing environment of a 

construction site. In the future, we will work on developing an algorithm that selectively updates only 

objects whose position has changed on the 3D map. 

Keywords: photogrammetry, ORB SLAM, computer vision, three-dimensional mapping, ROS 
 
 

Introduction 

In recent construction sites, the number of crane operators has been decreasing due to the 

aging of workers, the declining rate of young people entering the workforce, and the 

reduction in working hours because of work style reforms are problems. According to the 

report "Current Status and Issues Surrounding the Construction Industry" published by the 

Ministry of Land, Infrastructure, Transport and Tourism, the number of construction 

companies at the end of fiscal year 2021 was approximately 480,000, a decrease of about 

21% from the peak at the end of fiscal year 1999. Additionally, the average number of 
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construction workers in 2022 was 4.79 million, a decrease of about 30% from the average 

in 1997. One solution to this problem is the automation of crane operation. 

 

For the automation of cranes, it is important to generate a precise 3D map of the 

environment of a construction site, which changes every moment in real-time. This 

process involves initially creating a map within 5-10 minutes before the construction 

begins, followed by updating this map approximately once per second during operations.  

In this study, we focus on creating an initial map of construction site. For the creation of 

the initial map, a 3D map generated from a monocular camera attached to the end of the 

crane boom was used, as in previous research by Kobayashi et al. This research involves 

grasping the surrounding environment in about 10 minutes by rotating the boom before 

the crane begins work. However, there are several problems in putting this to practical 

use. The first is the physical constraint of the camera being attached to the end of the 

crane hook, which limits the range of the 3D map generated. The second is that the scale 

cannot be determined when using a monocular camera. These problems are unacceptable 

considering the goal of automating crane operation. Therefore, we propose a method that 

solves these problems. Next, we will briefly explain our approach. 

 

To address these issues above, we attached a stereo camera to a drone. By mounting the 

stereo camera on a drone, we were able to overcome the physical constraints imposed by 

attaching the camera to the crane hook. Additionally, using a stereo camera solves the 

issue of scale ambiguity that arises when using a monocular camera. To create the initial 

map, our approach involves flying the drone around the construction site while capturing 

images of the surroundings. These images are then processed to generate a comprehensive 

3D map of the environment. The method involves estimating the self-location using ORB 

SLAM, creating a disparity image using a stereo camera attached to a drone, and 

integrating them. ORB SLAM is a technology that simultaneously performs self-location 

estimation and generates a 3D point cloud of the surrounding environment in real time. 

The 3D point cloud generated by ORB SLAM is sparse and cannot be used to automate 

crane operation. Therefore, it is necessary to convert the sparse point cloud into a dense 

point cloud. A typical technology for converting a sparse point cloud into a dense point 

cloud is MVS (Multi-View Stereo). However, MVS calculations often take a huge amount 

of time, and it cannot be applied to this case, which requires real-time processing. 

Therefore, we propose a method that uses the position and orientation information of the 
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camera estimated by ORB SLAM to integrate the 3D point cloud generated using a stereo 

camera at each time. The stereo camera attached to the drone solves the first problem 

mentioned above, which is the problem of physical constraints. Self-location estimation 

and the creation and integration of a 3D point cloud using ORB SLAM solves the second 

problem, which is the problem of real-time performance. 

 

Literature Review  

Kobayashi et al., a 3D mapping method utilizing a monocular camera mounted at the tip of 

a crane boom was developed. This approach leverages the rotational motion of the crane to 

scan the surrounding environment over a period of approximately 10 minutes before 

operations commence, creating an initial 3D map. The camera continuously captures 

images as the boom rotates, and these images are subsequently integrated to map the 

environment. The system estimates disparity information from the captured images and 

integrates this data into a 3D point cloud. A key aspect of this process is the alignment and 

adjustment of scale and reference planes to reconcile images with varying disparity values. 

As a result, dense 3D point clouds are generated in quasi-real time, demonstrating 

improvements in both accuracy and speed compared to conventional methods. However, 

this method has several limitations: the generated map is restricted by the physical 

constraints of the camera’s attachment point, which is insufficient for the rapidly changing 

conditions of active construction sites. Additionally, there is the issue that a monocular 

camera cannot determine the scale because it lacks depth information, making it 

impossible to accurately estimate the real-world size and distance of objects.  

 

To overcome these limitations, more advanced 3D reconstruction techniques are necessary. 

Recent developments have introduced promising solutions in both passive and active 

methods. Passive methods include technologies such as COLMAP, Neural Radiance 

Fields (NeRF), and Gaussian Splatting. COLMAP combines Structure from Motion (SfM) 

and Multi-View Stereo (MVS) to generate detailed 3D models from images; however, its 

computational intensity makes it unsuitable for real-time applications. NeRF utilizes 

neural networks to model the radiance field of a scene from a sparse set of images, 

enabling highly detailed 3D reconstructions. Despite its potential, NeRF’s high 

computational requirements limit its applicability in real-time scenarios. Gaussian 

Splatting offers a faster approach to producing high-quality 3D models, particularly in 

dynamic scenes, but still faces challenges in real-time processing. 
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Active methods, on the other hand, include technologies such as LiDAR (Light Detection 

and Ranging), Structured Light, and Time-of-Flight (ToF) cameras, which emit signals 

and analyze their reflections to directly measure distances. LiDAR is particularly effective 

in generating dense 3D point clouds over large areas quickly, making it ideal for real-time 

applications in dynamic environments. Structured Light and ToF cameras also offer 

precise 3D mapping capabilities, with ToF cameras being particularly suited for capturing 

depth information across entire scenes in real-time. However, these active methods 

typically require expensive equipment and systems, making them costly to implement and 

operate, which is a significant drawback. 

 

While each of these technologies has its strengths, they also present specific challenges in 

terms of real-time processing and operational flexibility. Consequently, ORB SLAM 

(Oriented FAST and Rotated BRIEF SLAM) has emerged as a leading solution for real-

time simultaneous localization and mapping. ORB SLAM utilizes monocular, stereo, or 

RGB-D cameras to achieve visual SLAM with high accuracy and real-time performance. 

This approach proposes leveraging the advantages of ORB SLAM by utilizing stereo 

images captured by a drone-mounted camera to generate high-precision, real-time 3D 

maps of dynamic construction sites, thereby addressing the critical demands of automated 

crane operations. 

 

Despite significant advancements in 3D mapping technologies, achieving high-density, 

real-time 3D mapping for dynamic construction environments remains challenging. 

Building on previous research, this study integrates stereo vision with ORB SLAM to 

generate efficient 3D point clouds. Additionally, we enhance this approach with noise 

filtering and real-time processing optimizations. Unlike earlier methods that relied solely 

on monocular cameras or quasi-real-time processing, our approach leverages a stereo 

camera mounted on a drone in conjunction with real-time SLAM. This combination allows 

us to generate and integrate dense point clouds, effectively addressing the physical 

constraints and processing delays that have hindered prior efforts. 

 

Methodology  

a. Overview:  
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This research introduces a method for generating a 3D map of a construction site using a 

combination of a Unity-based simulation environment and a ROS (Robot Operating 

System) framework for image processing. Figure 1 illustrates the overall process flow. 

The simulated environment, built in Unity, replicates a realistic construction site complete 

with buildings and vehicles, as depicted in Figure 2. Within this virtual environment, a 

drone equipped with a stereo camera is operated to capture left and right images of the 

site, which are subsequently utilized to reconstruct a 3D map. The image processing is 

handled in ROS, where the mapping workflow begins with estimating the stereo camera’s 

position and orientation using ORB SLAM. This algorithm processes the stereo camera 

images captured by the drone, providing accurate self-localization information. Once the 

camera’s pose is determined, a disparity image is generated by analyzing the stereo 

camera’s left and right image pairs. This disparity image is then converted into a 3D point 

cloud for each frame. The generated 3D point clouds at different time steps are integrated 

using the camera’s position and orientation data, ensuring spatial consistency across the 

sequence. However, due to inherent noise in the point clouds caused by factors such as 

unintended distortions like pixelation, blurring, or color shifts resulting from sensor 

limitations or errors in image processing, a noise reduction process is applied. 

Specifically, the k-nearest neighbor (k-NN) method is employed to filter out erroneous 

points and enhance the overall quality of the 3D map. The proposed workflow 

demonstrates a seamless integration of simulation and real-time image processing, 

allowing for the development and testing of 3D mapping techniques in a controlled 

environment.  
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Figure 1: Overview of the method of this study 

 

 

Figure 2: The image of the simulator environment used for the research. 

b. ORB SLAM: 

This research utilizes ORB-SLAM (Oriented FAST and Rotated BRIEF SLAM) is used as 

the SLAM (Simultaneous Localization and Mapping) technology. SLAM is a technique 

that allows a moving agent to estimate its position and simultaneously build a map of an 
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unknown environment. It is widely utilized in fields such as robotics, autonomous driving, 

and augmented reality (AR). ORB-SLAM is a visual SLAM system capable of real-time 

operation and supports monocular, stereo, and RGB-D cameras. In this research, a stereo 

camera is employed as the sensor to perform self-localization and mapping by leveraging 

the 3D information of the environment. ORB-SLAM uses a feature-based approach, 

detecting key points with the FAST algorithm and describing features using BRIEF, 

enabling efficient and robust tracking and map generation. Additionally, ORB-SLAM 

includes loop closure detection and relocalization functionalities. Loop closure detection 

identifies when the system revisits a previously mapped area, allowing it to correct 

accumulated drift errors and improve overall map accuracy. Relocalization, on the other 

hand, is the system’s ability to recover from tracking failures by recognizing previously 

mapped features and re-establishing its position within the map. These features ensure 

high accuracy even during long-term operation. The reason ORB-SLAM was chosen for 

this research is due to its capability to provide accurate self-localization and map 

generation in visual SLAM using stereo cameras. ORB-SLAM excels in real-time 

processing and delivers stable performance in dynamic environments, aligning well with 

the objectives of this study. 

c. Generate disparity image and 3D point clouds: 

Disparity refers to the displacement in the image coordinate system when capturing the 

vertices of a given feature from left and right cameras. It quantifies the positional 

difference of the same object between images taken from different viewpoints, resulting in 

a disparity value for each pixel in the left and right images. Figure 3 illustrates the concept 

of disparity images. In this figure, a feature point P is observed from two cameras 

positioned on the left and right. Both camera coordinate systems are assumed to have no 

rotational angle around their respective axes (i.e.,    rotation), and the X-axis of the 

absolute coordinate system is aligned with the line segment     ̅̅ ̅̅ ̅̅ ̅ . The point P is 

represented as (       ) in the absolute coordinate system, while it is represented as 

(     )  and (     )  in the image coordinate systems of the left and right cameras, 

respectively. The disparity    is defined as follows: 

         

Given that the distance between the plane containing the camera’s principal points and the 

feature is  , the focal length is  , and the baseline length is  , the distance   can be 

calculated as follows: 
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Disparity is inversely proportional to the distance to an object; the larger the disparity, the 

closer the object is, while a smaller disparity indicates a farther object. In this study, 

disparity images at each point are aggregated to obtain depth information for the entire 

construction site. A stereo camera is employed to generate the disparity images. Because 

the optical axes of the stereo cameras are parallel, it simplifies the search for 

corresponding points between the left and right images, making the calculations more 

efficient. In a stereo camera setup, the parallel optical axes ensure that corresponding 

points shift predominantly in the horizontal direction within the image. This allows the 

search for corresponding points to be constrained to a horizontal range, thereby speeding 

up the computation. In contrast, when using a monocular camera to estimate disparity 

from images captured at multiple viewpoints, the images are taken from different angles, 

requiring an additional preprocessing step to rectify and align them as if the optical axes 

were parallel. This rectification involves geometric corrections across the images, leading 

to additional computational costs compared to a stereo camera setup. As a result, stereo 

cameras inherently avoid the need for this rectification process, making the search for 

corresponding points more straightforward. 

 

Figure 3: Illustration of Disparity Image Generation Using Stereo Cameras. 

Semi-Global Matching (SGM) is employed for generating disparity images. SGM is a 

disparity estimation method in stereo vision that optimizes the disparity map by 

accumulating costs from multiple directions. Specifically, it computes the disparity cost 
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from eight different directions and integrates them to determine the disparity value with 

the minimum energy for each pixel. This approach allows for the creation of smooth and 

continuous disparity maps while mitigating the influence of local noise, thereby achieving 

high accuracy in depth estimation for scenes. Additionally, SGM is computationally less 

demanding than full global optimization, making it suitable for real-time processing.  

 

Once the disparity map is generated, the 3D position of a feature point P in the camera 

coordinate system can be calculated. Given a feature point P with its coordinates in the 

camera coordinate system as (  
    

    
 )  and its corresponding image coordinates as 

(   ) in the image coordinate system, then (  
    

    
 ) can be derived using the camera's 

intrinsic parameters. Here,    and    are the focal lengths along the   and   axes, 

respectively, and    and    are the distances from the origin of the image coordinate 

system to the principal point. 
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From this transformation,   
 , which represents the depth, can be directly calculated from 

the disparity values for each pixel. This process is repeated for every pixel in the image, 

creating a 3D point cloud that represents the depth information of the entire scene. The 

stereo camera setup avoids the need for image rectification that would otherwise be 

required in a monocular camera system, thus making the depth estimation process more 

efficient. 

d. Integrate 3D point clouds: 

The 3D point clouds obtained in previous section are integrated across all time instances. 

To achieve this, the coordinate systems must be unified under a single reference frame. 

For convenience, the position of the camera in the first keyframe is set as the origin of the 

world coordinate system. Figure 4 illustrates the relationship between the positions and 

orientations of two cameras at different timestamps. The camera coordinate system of 

Camera 2 can be transformed into that of Camera 1 using a rotation matrix   and a 

translation vector  . Here,   and  are derived from the pose estimation provided by 

ORB-SLAM. Given a 3D point P (  
     

     
  ) represented in the coordinate system of 
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Camera 2, the corresponding point in Camera 1’s coordinate system can be expressed as 

follows: 

(

  
  

  
  

  
  

)   (

  
  

  
  

  
  

)  
 

 

Figure 4: The image of the simulator environment used for the research. 

When integrating the 3D point clouds across different keyframes, overlapping regions 

between the newly acquired point cloud and the previously integrated point clouds are 

handled by taking the average. This transformation is performed on the 3D point clouds 

obtained for all keyframes and then integrated into a single coordinate system.  

e. Remove noise: 

The generated 3D point clouds contain noise due to factors such as imperfect image 

acquisition, errors in disparity estimation, and slight misalignments during point cloud 

integration. To mitigate this noise, we employ the k-NN method. The k-NN algorithm 

analyzes the density of neighboring points around each point and removes outliers that 

exceed a predefined threshold. This approach significantly enhances both the accuracy 

and usability of the 3D point clouds. 

The k-NN method is employed to analyze the density of points in the vicinity of each 

point and identify outliers that are considered noise. For a given point Pi, we determine the 

set of neighboring points  (  ) based on Euclidean distance. The Euclidean distance 

 (     ) is defined as: 



                                                             Asian Conference on Remote Sensing (ACRS 2024)  

Page 11 of 18 
 

 (     )  √(     )
 
 (     )

 
 (     )

 
 

where     (        ) and    (        ) represent points in a three-dimensional space. 

Next, the local density around point Pi is evaluated by averaging the distances to the 

neighboring points in  (  ). The average distance   ̅ is calculated as follows: 

  ̅  
 

 
∑  (     )

    (  )

 

If this average distance   ̅, exceeds a predefined threshold  , the point    is classified as 

noise and removed from the point cloud: 

If   ̅   , then    is classified as noise. 

In addition to using the k-NN method for noise removal, we also perform down sampling 

as part of the noise reduction process. After identifying and eliminating noisy points based 

on the local density evaluation, the remaining point cloud is down sampled using a voxel 

grid approach. This method groups points within a predefined voxel size into a single 

representative point, effectively reducing the number of points while preserving the 

overall structure and details of the scene. By doing so, it is easier to perform the process 

of updating the 3D point clouds. 

 

Results and Discussion  

a. Simulator environment: 

In this study, we utilized a simulator environment developed with Unity. Figure 2 shows 

an image captured within the developed simulator. The simulated environment includes 

buildings, construction materials, and vehicles that replicate an actual construction site. A 

stereo camera is mounted vertically downward on a drone, which can be controlled using 

the directional keys of a Joy-Con for flight. The drone captures images while orbiting the 

construction site. The captured left and right images are transmitted from Unity to ROS. 

Once the image pairs are sent to ROS, ORB SLAM is initiated for processing.  

b. Computational Environment 

The computation environment used in this study is summarized in Table 1. This setup was 

used to run ORB SLAM and the associated 3D mapping processes.  
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Table 1: Summary of the computation environment 

 

 

 

 

 

c. Drone Flight Path 

The accuracy of 3D mapping is further enhanced by optimizing the drone's flight path. 

Specifically, the flight path is designed to include loop closures, which are essential for 

reducing accumulated drift errors in ORB SLAM. This is achieved by planning a flight 

route that returns to previously visited locations, allowing the system to correct any 

positional errors that may have occurred during the mapping process. Additionally, the 

drone maintains a constant altitude during flight, ensuring that the distance between the 

camera and the ground or target objects remains uniform. This consistent distance aids in 

the stable detection of feature points, thereby improving the accuracy of both the disparity 

images and the resulting 3D point clouds. Figure 5 illustrates the optimized drone flight 

path designed to enhance the accuracy of 3D mapping. As shown in the figure, the flight 

path includes deliberate loop closures, which are crucial for minimizing accumulated drift 

errors in ORB SLAM. The planned route ensures that the drone revisits previously 

mapped areas, allowing the system to correct any positional errors that may have occurred 

during the initial mapping process. Furthermore, the drone maintains a consistent altitude 

throughout the flight, as indicated by the arrows in the diagram. This constant distance 

between the camera and the ground or target objects facilitates the stable detection of 

feature points, ultimately improving the accuracy of the disparity images and the resulting 

3D point clouds.  

Specification Detail 

CPU Intel(R) Core(TM) i7-9700 

Memory 31GB 

Swap Memory 2GB 

Operating System Ubuntu 20.04.1 LTS 

Kernel Version 5.15.0-107-generic 



                                                             Asian Conference on Remote Sensing (ACRS 2024)  

Page 13 of 18 
 

 

Figure 5: Optimized Drone Flight Path for Enhanced 3D Mapping Accuracy with Loop 

Closure Considerations. 

d. Data: 

The stereo camera setup is realized by aligning two ideal cameras, without lens distortion, 

provided by Unity by default, with a baseline of 0.3 meters. Table 2 details the camera 

settings used in this study. 

 

 Table 2: Setting of the stereo camera 

 

 

 

 

 

e. Results: 

Figure 6 illustrates the trajectory of the camera’s estimated position via ORB SLAM 

compared to the actual camera trajectory. 

Setting Value 

Focal length [px] 20.78461 

Vertical viewing angle [ ] 60 

Sensor size [px] (     ) 
Number of pixels [px] (       ) 
Frame rate [fps] 30 
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Figure 6: The figure compares the camera trajectories in a 3D coordinate system. The 

dotted line represents the camera trajectory estimated by ORB SLAM, while the blue line 

represents the actual camera trajectory. 

Table 3 presents the trajectory of the camera’s estimated position via ORB SLAM 

compared to the actual camera trajectory, evaluated using Absolute Pose Error (APE). 

APE is a metric used to quantitatively assess the error between the actual camera position 

and the estimated position. Let   
  

 represent the coordinates of the actual camera position 

at the   frame,   
    represent the estimated camera coordinates, and   denote the total 

number of frames in the sequence. APE is then calculated using the following equation: 

    ∑|  
  
   

   |

 

   

 

Table 3: This table summarizes the absolute position error between the trajectory of the 

camera position estimated using ORB SLAM and the actual trajectory of the camera 

position. 

 

 

 

 

 

The average APE was 0.030 meters for a construction site area measuring approximately 

60 meters in length and 50 meters in width. Notably, significant errors were observed in 

the z-axis direction. 

 

APE Value[m] 

Max value 0.298 

Average value 0.030 

Median value 0.020 

RMSE 0.033 



                                                             Asian Conference on Remote Sensing (ACRS 2024)  

Page 15 of 18 
 

Figure 7 illustrates the 3D point cloud prior to noise removal. Figure 7 presents the 

integrated 3D point cloud obtained after iterative ORB SLAM-based self-localization and 

3D point cloud generation using disparity images. To facilitate accuracy comparison, 

Figure 7 is captured from the same viewpoint as the reference 3D model shown in Figure 

2. While the overall features of the model are discernible in comparison to the 3D model 

in Figure 2, some noise remains, indicating that the results are not entirely accurate. 

  

Figure 7: The final 3D point cloud of the simulator. 

Finally, we present the results of noise removal. Using the k-NN method, noise was 

removed from the generated 3D point cloud of the entire construction site. The results are 

shown in Figure 8. The uneven surfaces of the buildings and the overall shape and scale of 

the boxes were accurately represented. The entire processing took 211 seconds, which 

meets the time requirement for generating the initial map, typically expected to be within 5 

to 10 minutes.  

 

Figure 8: 3D point cloud with noise removed. 
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Conclusion and Recommendation 

In this study, we developed and evaluated a real-time 3D mapping method tailored for 

dynamic construction site environments using a stereo camera mounted on a drone in 

combination with ORB SLAM. The primary objective was to address the limitations of 

existing methods in generating accurate and dense 3D point clouds for applications like 

automated crane operation, where real-time performance and adaptability to ever-changing 

environments are critical. 

 

Recent 3D mapping methods for construction automation primarily rely on monocular 

cameras and have several significant limitations. Monocular cameras cannot determine 

scale, making it challenging to obtain accurate distance information. Additionally, in 

existing methods, the camera is often mounted on the crane’s hook, leading to issues such 

as reduced map accuracy due to hook vibrations and limited field of view due to the fixed 

camera position. These physical constraints make such approaches unsuitable for scenarios 

that require high-density and real-time data. To address these challenges, our approach 

utilizes a stereo camera to accurately determine scale and employs ORB SLAM for real-

time self-localization and mapping.  

 

Our proposed method operates in three main stages. First, dense point clouds are generated 

by calculating disparity images using a stereo camera mounted on a drone. The stereo 

camera allows for capturing depth information in real-time, addressing the limitations 

posed by traditional monocular setups. Next, ORB SLAM is employed for self-

localization, using feature-based methods to estimate the camera’s position and orientation 

with high precision. These estimates are used to integrate the point clouds over time, 

effectively building a comprehensive 3D model of the environment. Finally, noise removal 

is performed using the k-NN method, which filters out outliers by analyzing the density of 

surrounding points. This ensures that the final 3D map is not only dense but also free from 

the common noise issues that arise from image acquisition errors, disparity estimation 

inaccuracies, and integration misalignments. 

 

The effectiveness of our approach was tested using a simulated construction environment 

developed in Unity. The environment includes detailed elements such as buildings, 

vehicles, and construction materials, closely mimicking a real construction site. A stereo 

camera with a baseline of 0.3 meters was mounted on a drone, which was controlled to 
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capture images while orbiting the site. The captured frames were processed in ROS to 

generate disparity maps, estimate the drone’s pose using ORB SLAM, and integrate the 

resulting 3D point clouds.  

 

Our experimental results demonstrate that the proposed method can generate a highly 

accurate and dense 3D map of a construction site in real time. The generated map 

successfully captures the uneven surfaces of buildings, correctly represents the scale and 

geometry of objects such as boxes and construction equipment and shows minimal 

deviation in pose estimation when compared with the ground truth. The Absolute Pose 

Error (APE) analysis confirmed that the average deviation remained within acceptable 

limits for practical applications, with a root mean square error (RMSE) of 0.033 meters 

over the entire trajectory. The noise filtering using k-NN further enhanced the clarity of 

the point cloud, producing a map that closely aligns with the real-world structure while 

removing spurious points. 

 

Looking ahead, we will focus on further enhancing the adaptability of the system to 

dynamic environments. We aim to develop algorithms that can selectively update only the 

regions of the 3D map where changes have occurred, enabling efficient real-time updates 

in continuously evolving construction sites. Additionally, we plan to extend our validation 

from the current simulation environment to real-world scenarios to further improve the 

system’s practicality.  
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