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Abstract: Wildfires are a major natural catastrophe that disrupts the normal cycle of ecosystems, 

causing forests to be destroyed. Annually, a substantial amount of forest is devastated by wildfires 

around the globe. Reliable and accurate data about the burnt areas is crucial for assessing the amount 

of wildfire damage. Utilizing remote sensing and advance deep learning techniques provides significant 

advantages in enhancing the dependability and effectiveness of detecting burnt areas. This study 

examines the wildfires that occurred place during July 2023 around the Aegean region of Turkey. 

Within the scope of the study, classification was carried out with pixel-based Convolutional Neural 

Network (CNN) using Sentinel-2A imagery before and after the wildfires. Prior to classifying the 

severity of the fire, the dNBR values were computed and four distinct degrees of intensity were identified 

using the thresholds established in USGS FIREMON. Prior to generating wildfire severity classes for 

the training data set, dNBR values were computed and 4 distinct intensity levels were identified using 

thresholds specified in USGS FIREMON. Spectral indices (Burned Area Index-BAI and normalized 

difference vegetation index-NDVI) of pre- and post-fire Sentinel-2A images were calculated and 

included in the data set during classification. As a result of the burn severity classification, the overall 

accuracy was determined as 90.24% and the kappa coefficient was 86.98%.  The results demonstrate 

that the model attained exceptional accuracy rates across all test data. Furthermore, the SHAP 

methodology, which is a globally explainable artificial intelligence method, was employed to 

comprehend the decision-making processes of the trained deep learning model and assess the efficacy 

of each feature inside the model. The SHAP findings revealed that both post-BAI and pre-BAI variables 

significantly influenced the decision-making process of the model. In conclusion, this study proves how 

effective deep learning technique with XAI method are in accurately assessing fire damage. 
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Introduction  

Forests, which cover around thirty percent of Earth’s surface, provide biological and 

environmental equilibrium. In addition, they also regulate climate and increase genetic 

variety. These activities have several benefits, including conserving natural balance, 

sustaining the ecosystem, biodiversity, and sustainability (Kavzoğlu et al., 2021a). 

According to the FAO Global Forest Resources Assessment report by 2020, there were 

about 4.06 billion hectares or 31 percent of worldwide terrestrial region covered by forests. 
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However, over the past 30 years, 178 million hectares of forest have been lost (FAO, 2021). 

In 2023, The General Directorate of Forestry reported 23,363,071 hectares of forest in 

Turkey. Human-caused greenhouse gas emissions lead to climate change as deforestation 

increases. This circumstance reinforces the need of forest conservation and sustainable 

management in fighting climate change. Additionally, forests control atmospheric carbon 

and block climatic transformation in addition to saving biodiversity (Heinrich et al., 2021). 

Forest fires harm the physical, chemical, and biological equilibrium of ecosystem. 

Moreover, they could boost greenhouse gas emissions (Ribeiro-Kumara et al., 2020). 

Global climate change is worsening, creating a global climate crisis. Due to severe heat and 

dryness, the 6th Assessment Report of the Intergovernmental Panel on Climate Change 

predicts more forest fires globally (IPCC, 2021). The Mediterranean region is predicted to 

have more extended droughts and big forest fires, as well as lower precipitation and higher 

temperatures. The forest fires cause destruction particularly under hot, dry and windy 

conditions. 

The General Directorate of Forestry Forestry Statistics for 2023 indicate that Turkey’s 

forest lands increased from 20 million hectares in 1973 to 23.4 million hectares. 

Tüfekçioğlu and Tüfekçioğlu (2021) report that 58% of our country’s forest resources are 

in fire-prone locations, particularly in Mediterranean and Aegean regions. In the past 

decade, annually, Turkey has experienced an average of 2388 forest fires which destroyed 

about 6665 hectares of its forests. The mega forest fires of 2021 caused significant damage 

and forest area losses (Kavzoğlu et al., 2021a; Tonbul, Colkesen, & Kavzoglu, 2022).  

Monitoring, mapping and assessing burnt areas after wildfire is essential for sustainable 

forest fire management. Accurate and trustworthy fire information helps reduce fire causes, 

identify fire-prone regions, and development fire prevention tactics.  In this regard, satellite 

images are key outcomes of remote sensing technology that assist in monitoring forest fires, 

mapping burnt areas, and assessing temporal changes. In attempt to collect precise 

information about forest fires happening in different geographic positions over time as well 

as across the forest fire investigations utilize remote sensing techniques. 

In remote sensing with satellite images, mapping burned regions is a major key area of 

focus. Remote sensing tools are providing high resolution images more often as a result of 

technology advancement. Sentinel-2 satellite, introduced by the European Space Agency in 

2015, has capable of taking high-resolution images every five days, for utilizing to monitor 

forest fires and other places. Various approaches, such as supervised classification, object-
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based classification, spectral index analysis, and spectrum mixing, have been used to map 

post-fire situations (Kavzoğlu et al., 2021a; Tonbul et al., 2022; Filipponi, 2019). 

Vegetation burning leads to significant reductions in visible-near infrared reflectance (0.4-

1.3 µm) through both combustion and loss of plant cover (Eva and Lambin, 1998). Spectra 

of burning and dense grass cover, sparse grass cover, and small shrubs with burning show 

gradual increase in reflectance in the 0.5-0.7 µm electromagnetic spectrum, while extensive 

vegetation spectra fluctuate. Due to this phenomenon, post-fire modifications on plant life 

are brought forth by burning and destruction. Evaporation decreases because charred plant 

absorbs more radiation than green vegetation. Increases in surface reflectance and 

temperature are detected in the shortwave infrared band (1.6-2.5 µm). The larger the 

spectral difference observed from land cover within a burnt area, the more extensive it had 

been damaged by fire (Brovkina et al., 2020). Fire intensity differences the spectral response 

of land cover (White et al., 1996). Post-fire modifications depend on plant community type, 

annual temperature trends during the vegetative season, and the time since the occurrence 

of a flame (Lentile et al., 2006). Normalized Difference Vegetation Index (NDVI), Burned 

Area Index (BAI), Normalized Burned Ratio (NBR), and Difference Normalized Burned 

Ratio (dNBR) can be used to detect burned areas by detecting broad spectral changes in 

vegetation. NBR and dNBR have gained the greatest popularity. 

The research focuses on the forest fires that occurred place in Muğla province on 12 and 14 

July 2023. It employs Sentinel-2 satellite images captured before the fire (11 July 2023) and 

after the fire (16 July 2023) to analyze the intensity of the fires using a deep learning 

method. Furthermore, pixel classification procedures were conducted using both the 

spectral bands and the vegetation and fire spectral indices. In addition, through explainable 

artificial intelligence methods applied to the models trained, it was studied how fire area 

determination occurred along with determining its severity. 

 

Study Area and Dataset 

This study analyzes the two consecutively took place forest fires in the Aegean Section of 

Turkey in 2023. For the research, Muğla province was selected as the study region due to 

the wildfires that occurred in Maya (region 2#) and Güvercinlik (region 1#) regions on 12 

July and 14 July 2023 (Figure 1). Muğla province has a Mediterranean climate with hot-dry 

summers and mild-rainy winters.  In general, Muğla province has a mountainous forested 

area covered with pine trees.  
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Figure 1: Study area with wildfire locations. 

 

Two cloud-free Sentinel-2A satellite images from 11 July 2023 (pre-fire) and 16 July 2023 

(post-fire) were utilized to assess forest conditions in the research region. The Sentinel-2A 

imagine has visible (Red-Green-Blue) and infrared bands with a spatial resolution of 10 m, 

red edge, infrared, and shortwave infrared bands with 20 m, and coastal aerosol, water vapor, 

and cirrus bands with 60 m. Copernicus Hub provided the satellite imagery of the study. 

Prior to processing images, all 60-m-resolution spectral bands were removed. The fire 

analysis data collection has just 10 m and 20 m spatial resolution bands. In a pre-processing 

step, the Gram-Schmidt method, a pan-sharpening technique, lowered all spectral bands 

with a spatial resolution of 20 m to 10 m.  

Four different spectral indices were calculated for the deep learning-based classification 

stages and the determination of burning severity levels. These indices recognize the need 

for both burned and unburned regions. The formulas, abbreviations and reference sources 

of the indices used in the study are presented in Table 1. 

Table 1: Spectral indices were used for detecting wildfire region. 

Name Abbr. Formulas References 

Burnt Area Index BAI 
( . Bant ) ( . Bant )+− −

2 2

1

0 1 4 0 06 8  

Chuvieco, Martín & 

Palacios, 2002 

Normalized difference 

vegetation index 
NDVI 

(𝑩𝒂𝒏𝐝𝟖 − 𝑩𝒂𝒏𝐝𝟒)

(𝑩𝒂𝒏𝐝𝟖 + 𝑩𝒂𝒏𝐝𝟒)
 Tucker, 1979 

Normalize Burn Ratio NBR 
(𝑩𝒂𝒏𝐝𝟖 − 𝑩𝒂𝒏𝐝𝟏𝟐)

(𝑩𝒂𝒏𝐝𝟖 + 𝑩𝒂𝒏𝐝𝟏𝟐)
 Key & Benson, 2005 
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Difference Normalized 

Burn Ratio 
dNBR 𝑵𝑩𝑹𝐩𝐫𝐞−𝐟𝐢𝐫𝐞 −𝑵𝑩𝑹𝐩𝐨𝐬𝐭−𝐟𝐢𝐫𝐞 

Key & Benson, 2005; 

2006 

 

Within the scope of the study, the dNBR index was used for the sample identification of the 

burning severity level (unburned, low, moderate-low, moderate-high). Since there were very 

few samples at the high burning severity level, all of them were added to the moderate-high 

level. 

Methodology  

The CNN architectures, which are made up of several layers including convolutional, 

normalization, pooling, dense, and dropout layers, have gained significant popularity as 

deep learning models for extensive image applications (Yilmaz & Kavzoglu, 2021; 

Kavzoğlu & Yılmaz, 2022). CNNs use the characteristics of real information by employing 

four fundamental principles: local connections, weight sharing, pooling, and the 

incorporation of many layers (LeCun et al., 2015). By applying the exceptional 

characteristics of a dataset, it is possible to distinguish features without depending on human 

guided and complicated rules. CNNs consist of input, hidden, and output layers, which are 

important components regardless of their size. In the one-dimensional CNN model, the input 

layer consists of a one-dimensional matrix that contains the feature values. Convolutional 

layers consist of convolutional filters, and the weights are adjusted using the back-

propagation approach. A series of trainable filters is used to convolve over the dataset 

generating several feature maps that fully cover the entire set. Convolutional processing 

efficiently recovers the most important characteristics of the dataset while minimizing the 

number of parameters and computer resources needed (Kavzoglu et al., 2021b).  

Artificial intelligence (AI) systems that are currently in operation frequently possess an 

internal mechanism which is opaque systems (Temenos et al., 2023). These models have 

complex designs for outstanding performance. These designs may include hundreds of 

learnt parameters and a complicated mathematical representation (Speith, 2022). This 

reduces explainability. This may not essentially be an issue in decision-making that 

prioritizes performance more than logical thinking. Nevertheless, model explainability or 

interpretability are crucial, especially when taking significant decisions. For these issues, 

XAI offers numerous techniques to make opaque AI systems visible (Saeed and Omlin, 

2023). XAI, which may be a rebirth of a new topic, has become a major study focus on 

several fields to improve the algorithm trust and responsibility. Furthermore, Shapley 
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Additive Explanation (SHAP), which is a XAI methods, interprets the outputs of 

machine/deep learning model (Lundberg and Lee, 2017). It operates by assigning each 

feature’s prediction effect independently. SHAP values give an entire overview of a model 

predictions, including feature contributions and interactions. It clarifies how models predict.  

They are the total of the difference between the predicted and actual output for a sample, so 

they have a probabilistic explanation. The interpretation stage compares the contribution of 

different characteristics to a prediction and assesses explanation uncertainty. 

Results and Discussion  

Within the scope of the study, to produce fire severity maps of the study region, training 

and test data sets were created in a ratio of 70:30 with stratified random sampling technique. 

A total of 980 samples for the training data set and 420 samples for the test data set were 

collected within the boundaries of the study zone. Among the fires that occurred on two 

different dates within the study area, the forest fire that occurred in the northeastern part of 

the study area on 12 July 2023 was used for the training data set, while the forest fire that 

occurred in the southwestern part of the study area on 14 July 2023 was used as a test data 

set to evaluate the performance of deep learning algorithm. 

The 1D-CNN model contains Conv1D, Batch Normalization, Dropout, Flatten, and Dense 

layers. The total number of parameters is 748,436, out of which 746,452 may be showed by 

training, while 1,984 parameters remain untrained. The initial layer consists of a Conv1D 

layer with 512 filters, which is then followed by Batch Normalization and Dropout layers. 

Following each Conv1D layer, this structure was replicated, with the number of filters 

decreasing gradually to 32. Ultimately, the data was compressed and the SoftMax activation 

function was chosen for the final output layer to classify the combustion levels into 512, 

256, 128, 64, 32, 16, and 4 individual groups. This structure is designed to improve the 

ability of model to accurately categorize various degrees of combustion intensities. Dropout 

was used after each thick layer to mitigate the risk of overfitting. 

The model parameters were obtained by an iterative process of trial and error. The Adamax 

algorithm was employed for optimization, and also the categorical cross entropy function 

was selected as the loss function. The training process was performed with 500 epochs and 

each epoch including a batch of 32 data. The parameters were selected to maximize the 

model’s performance on the validation set. The observed performance increases, 

particularly after 500 epochs, suggest that these settings are successful in training the model. 
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Upon analyzing the learning curve of the 1D-CNN model during the training and validation 

stage, a notable increase in the performance of model is evident. Although the training loss 

(shown by the blue line) reduces fast, the validation loss (represented by the orange line) 

follows a similar pattern. However, after the 100th epoch, the validation loss stabilizes and 

continues with minor variations. The training accuracy, represented by the green line, and 

the validation accuracy, represented by the red line, exhibit a gradual rise with time and 

reach a plateau at around epoch 300. To summarize, the performance of model was 

satisfactory, but it might be further enhanced by implementing regularization techniques or 

data augmentation strategies to increase the accuracy of the validation process. No instances 

of overfitting were detected.  

 

 

Figure 2: Learning curve for CNN model. 

 

The thematic map displays the level of burn severity in a certain location after a forest fire, 

classified into four distinct levels (Figure 3). The colors on the map depict the spatial 

arrangement of burn severity. The green color signifies regions that remain unaffected by 

the wildfire, denoted as ‘Unburned’, whilst the yellow color represents areas of low severity. 

The orange color indicates areas with moderate-low severity, whereas the red color shows 

locations with the highest severity, specifically moderate-high severity areas damaged by 

the forest fire. It is worth mentioning that the red colors on the map are particularly 
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concentrated in the northeast and southwest regions, indicating the areas with the most 

intense forest fire activity. Furthermore, areas with different degrees of intensity are shown 

using yellow and orange colors. The map provides geographical coordinates and a distance 

scale, allowing for a clear understanding of the physical dimensions of the region in relation 

to the intensity information. 

 

 

Figure 3: Burn severity thematic map produced using CNN model. 

 

A pixel-based deep learning algorithm was used for the estimation of forest fire severity 

maps and levels. The accuracy of the model was measured by overall accuracy and Kappa 

coefficient, and the accuracy of the burn levels was measured by precision, sensitivity and 

F1 score metrics (Table 1). This study investigated the classification performance outcomes 

of the 1D-CNN model used to create fire severity maps. The model attained an accuracy of 

85%, a recall of 95%, and an F1-score of 90% in the ‘Unburned’ class. The ‘Low Severity 

Burn’ class scored an accuracy of 96%, a recall of 84%, and an F1-score of 89%. The model 

obtained an accuracy of 94%, a recall of 87%, and an F1-score of 90% for the ‘Moderate-

Low Severity Burn’ class. For the ‘Moderate-High Severity Burn’ class, the model achieved 
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an accuracy of 88%, a recall of 95%, and an F1-score of 91%. The overall accuracy of the 

model was determined to be 90.24%, while the Kappa coefficient was calculated to be 

86.98%. The findings indicate that the model has a strong performance in accurately 

classifying fire severity maps. 

 

Table 1: Accuracy assessment for forest fire severity map. 

Burn Severity Class Names Precision Recall F1-score 

Unburned 0.85 0.95 0.90 

Low severity 0.96 0.84 0.89 

Moderate-low severity 0.94 0.87 0.90 

Moderate-high severity 0.88 0.95 0.91 

Overall Accuracy 0.9024 

Kappa Coefficient 0.8698 

 

Figure 4 illustrates the primary determinants of the output of model, as shown by the SHAP 

(SHapley Additive exPlanations) values. The SHAP chart illustrates the impact of inputs 

(spectral bands and indices) on the assessment of model of forest fire severity. The 

horizontal bars of graph depict the mean impact of each input on the model’s output, with 

various colors indicating different fire severity classifications (Yellow: Medium-high 

severity burn, Red: Unburnt regions, Orange: Low severity burn, Green: Medium-low 

severity burn). The Post-BAI and Post-NDVI indices are the most influential inputs for the 

decision-making process. The ‘Post-BAI’ factor has a notable impact on all levels of 

wildfire severity. The Pre-BAI and Pre-NDVI indices play a crucial role and make a 

substantial contribution to the classification performance of the model. In addition, some 

spectral bands and indices, including Post-BAI and Pre-B8a, had a notable impact on the 

results of the model, particularly for regions that were unburned and burned with low 

intensity. The findings demonstrate that specific spectral bands and indices are crucial in 

determining the intensity of forest fires. Also, the SHAP values provide insight into the 

inputs that the model heavily depends on. 
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Figure 4: SHAP bar graph for the explainability of the decisions taken by the model in 

determining the burn levels 

 

The SHAP beeswarm graphic illustrates the specific extent to which certain attributes 

contribute to the output of model. The x-axis represents the SHAP values, which indicate either 

a positive or negative impact. The characteristics of model are given on the vertical axis. The 

color gradient adjacent to the characteristics illustrates the range of values for each feature; 

colors of blue correspond to low values while colors of red correspond to high values. It clearly 

shows that the model output is significantly influenced by features such as post-NDVI and 

pre_b11. In addition, certain characteristics, such as post-NDVI, have a detrimental effect and 

others, such as post_b8a, have a beneficial effect. This research provides a comprehensive 

analysis of the bands and indices to which the model is more sensitive, as well as the specific 

attributes that have a greater impact on the output of model. This research is essential to gain a 

deeper understanding of the model's decision processes, particularly when dealing with 

complex remote sensing data. 
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 Figure 5: SHAP beeswarm graph to explain the decisions taken by the model in 

determining burn levels. 

 

Conclusion and Recommendation  

This work used a deep learning model to analyse the burn severity of post-fire sites and 

develop a thematic map. Burn severity was classified into four different categories: no burn, 

low severity, medium-low severity and medium-high severity. It was found that burn 

severity was concentrated in the north-eastern and south-western regions, resulting in 

significant fire impacts in these areas. It was recommended that natural regeneration 

processes should be monitored and that ecological treatments should be applied where 

necessary in low and medium burn severity areas. These findings provide important 

information for understanding post-fire ecosystem dynamics and guiding restoration 

initiatives. In addition, the use of XAI methods allowed us to gain a deeper understanding 

of the decision-making processes by studying the model. The SHAP studies identified the 

specific features and pixel groupings to which the model gave greater importance during the 
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prediction stage. The data collected from spectral bands in areas of high fire intensity had 

noticeable characteristics that resulted in a high level of prediction accuracy. Conversely, 

the model was found to have a higher degree of uncertainty in its conclusions and the 

accuracy of its predictions decreased in areas of low and moderate fire intensity. In addition, 

the SHAP results provided evidence for the effectiveness of the BAI and NVDI indices in 

detecting burned areas. To improve the performance of the model, it is recommended that 

the data be supplemented, and tests conducted on additional parameters, particularly in areas 

of low fire severity. The utilization of SHAP and other XAI methods develops the clarity of 

the model and contributions in decision making for ecosystem restoration and management. 
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