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Abstract: Real-time processing of satellite data necessitates pipelined parallelism wherein a block of 

raw-data is transformed into final-processed data block as it moves from one stage of pipeline to 

another. For high-data rate satellites (like Cartosat-3 with 2.88 Gbps), the rate at which the blocks-of-

data is generated is very high. Hence, efficient inter-process communication (IPC) for seamless data 

exchange between parallel processes is necessary for real-time processing. Shared memory is the 

fastest IPC mechanisms but often introduce complexity due to their intricate nature. Their direct use 

can be challenging for developers to learn and use effectively, leading to errors and time-consuming 

debugging.  This paper addresses this challenge by proposing a novel, memory-based read-write API 

specifically designed for real-time processing of satellite data. This API offers a developer-friendly, 

file-like interface that abstracts complex IPC mechanisms, enabling efficient data exchange.  It provides 

flexible data-exchange between processes like that achieved using a file with comprehensive features 

for robust data handling such as blocking reads, timed-reading, unblocking writes to accommodate 

growing-satellite data acquired during ground station visibility. The API also simplifies IPC resource 

management with a well-defined interface and offers multiple debug modes for streamlined 

development. It implements abstraction for shared memory IPC handling buffer-overflow for growing 

satellite data thereby enhancing reliability and improving flexibility. By streamlining complex IPC 

tasks, this API significantly reduces development time and effort enabling developers to focus on core-

algorithms while improving the overall processing efficiency of real-time satellite data systems and 

making it an invaluable tool for real-time processing application. 
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Introduction  

Real-time satellite data processing is crucial for applications that require immediate access 

to data, such as disaster response, emergency management, and other time-sensitive 

scenarios. Near real-time utilization of satellite data allows for faster decision-making and 

more effective actions during critical situations. To handle the high-data rate efficiently in 

real time, the satellite's ground systems and data processing infrastructure need to be 

equipped with scalable, low-latency inter-process communication (IPC) mechanisms, 

memory management strategies, and parallel/distributed computing approaches. Such 

infrastructure allows for rapid processing, storage, and dissemination of satellite data to 

applications that demand immediate access, like emergency management, defense, or 

environmental monitoring. Of the different components that make real-time (RT) 

processing possible, one critical aspect is the IPC between processes running on a 

processing node, as it enables seamless data exchange. This paper focuses on the importance 

of IPC in real-time data handling. 

To ensure that high-data-rate satellite data can be processed in real time, one effective 

strategy is pipelined parallelism, where different stages of the processing pipeline handle 

separate blocks of data simultaneously. This approach optimizes both throughput and 

latency by distributing the workload across multiple stages, allowing for continuous data 

flow. However, for such pipelined parallelism to function effectively, efficient IPC between 

stages is essential to ensure that data is passed quickly and reliably from one process to the 

next. While traditional IPC mechanisms can offer the necessary speed, they are often 

complex, making implementation and management challenging. Therefore, the objective of 

this paper is to propose a memory-based API that simplifies IPC for real-time processing, 

enhancing both efficiency and reducing development complexity. It presents design of the 

library that abstracts the complexity of setting up and managing shared memory, 

synchronization mechanisms, and buffer management. By using the simple file-like 

read/write interface that this library provides, developers can focus on the processing logic 

rather than the intricate details of IPC, thereby reducing complexity and development time. 
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Literature Review  

The increasing volume of satellite data, with advancements in high-resolution imaging 

satellites like Cartosat-3, has introduced significant challenges in real-time data processing. 

Cartosat-3 a third generation, agile and advanced satellite, with very high-resolution imaging 

capability downlinks data at rates of 2.88 Gbps. Such rates necessitate efficient real-time (RT) 

processing systems to handle the data volumes effectively. Research in this area predominantly 

focuses on distributed systems to process large datasets using scalable cloud or edge computing 

frameworks. However, these solutions introduce complexities and resource requirements that 

may not always be necessary, particularly in use cases where the data can be processed on a 

single node. 

Many applications, such as disaster response, environmental monitoring, and defense, require 

satellite data to be processed and acted upon in real time. While the literature has explored real-

time satellite data processing in distributed systems, there is limited research on how single-

node systems can meet these real-time demands without the overhead of distributed 

frameworks. In cases where low-latency processing on dedicated single-node systems is 

sufficient, optimizing the data exchange between parallel processes becomes crucial. 

Inter-process communication (IPC) is a core component of real-time processing systems, 

especially for parallel processes running on a single node. Traditional IPC mechanisms, 

including pipes, message queues, and shared memory, have been widely studied for their role 

in facilitating communication between processes within the same machine. While shared 

memory offers the advantage of low-latency data exchange, its implementation and 

management are complex especially in high-throughput, real-time environments. 

Research on IPC has often focused on their use in distributed systems, where the emphasis is 

on managing communication between nodes over a network. However, in the context of 

parallel processing on single-node, there is limited discussion on simplifying IPC for real-time 

performance without distributed processing. Studies that do address IPC on single node 

environments frequently highlight the difficulties of synchronization, memory management, 

and resource contention. These challenges make traditional IPC usage cumbersome, especially 

in real-time satellite data processing applications where efficiency and simplicity are crucial. 
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Memory-based IPC, particularly through shared memory is an efficient method for high-speed 

communication between parallel processes on a single node. However, traditional shared 

memory implementations require developers to manually manage memory allocation, 

synchronization (e.g., using semaphores or mutexes), and avoid race conditions. There is a 

clear need for solutions that abstract these low-level operations, enabling developers to focus 

on application logic rather than the intricacies of memory management. 

Pipelined parallelism is a widely used approach for optimizing data processing throughput and 

latency in real-time systems. By dividing the data processing workflow into distinct stages, 

each stage can operate on separate blocks of data in parallel, ensuring continuous data flow. 

This architecture has been particularly effective in high-performance computing (HPC) 

environments and real-time systems, where it allows for the concurrent processing of data 

streams. However, efficient data exchange between stages in a pipelined parallel system relies 

heavily on the underlying IPC mechanism.  Therefore, an optimized, simplified IPC approach 

that can handle high-throughput data exchange in a pipelined architecture is needed for real-

time satellite data processing on a single node. 

Libraries like POSIX shared memory and System V IPC offer standardized approaches to 

managing shared memory, message queues, and semaphores. However, these libraries still 

require significant expertise to implement and manage effectively in real-time systems. Recent 

research has explored higher-level abstractions and APIs designed to simplify IPC, but these 

solutions often target distributed computing environments and do not fully address the specific 

challenges faced by single-node, real-time systems. This paper proposes an API that simplifies 

IPC by offering a file-like read/write interface, abstracting the complexity of traditional shared 

memory implementations. The proposed API is well-suited for pipelined parallel processing, 

providing a streamlined approach to data exchange between parallel processes running on the 

same machine.  
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Methodology  

 

Design of the library 

The core requirement for the proposed library was to facilitate efficient data exchange 

between parallel processes using a simplified interface. Specifically, Process 1 writes M 

bytes of data (of datatype1) into shared memory using the APIs mwrite() call, while Process 

2 reads N bytes of data (of datatype1) using the APIs mread() call. Importantly, M and N 

can be different, and the library should ensure that if Process 2 requests more data than is 

available (N > M), then it automatically makes Process 2 wait until the required amount of 

data is available. This feature provides flexibility in data handling to both processes 1 and 2 

while abstracting the complexities of internal memory shared between them and the 

synchronization required. 

 

Figure 1: Typical sequence of library/API calls 

Design Considerations 

Given the constraints and requirements of real-time processing on RAM-limited systems, 

the following design decisions were made to optimize inter-process communication using 

System V shared memory IPC: 

• Shared memory implemented as circular-buffer: To efficiently handle the memory 

limitations of the system, shared memory is implemented as a circular buffer. This 

approach allows for continuous writing and reading of data without exceeding the 

memory constraints, even when high volumes of data are being processed.  
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• Synchronization of shared memory: The circular buffer requires explicit 

synchronization between the writer (Process 1) and the reader (Process 2) to ensure 

mutual exclusion. System-V semaphore is used by library for this purpose to prevent 

race condition. The semaphore is employed to protect specific portions of shared 

memory being accessed. This ensures that while one process is writing, the other 

process cannot access the same memory segment, thus preventing data corruption 

When reading process (say Process 2) attempts to read more data than is currently 

available in the shared memory, it is blocked until the required data becomes 

available. This blocking is managed by a semaphore that signals when sufficient data 

has been written (say by Process 1) 

• Variable Read/Write block-size in circular Buffer: The amount of data being written 

by a process (say process 1) may be M bytes every time but for the last buffer being 

processed, the number of bytes may be less than M. Similarly, the reading process 

(say process 2) may request N bytes for read. So, the size of block being written to 

or read from circular buffer for a given data type is variable i.e. not fixed. 

• End-of-Data Indication for Reader 

Termination Handling: The library includes mechanisms to indicate both normal and 

abnormal termination of the writing process so that reading process (Process 2) is 

aware of whether more data can be expected or if the writer has terminated. 

Data Availability: A metadata structure is maintained within a separate shared 

memory segment. This metadata tracks the total number of bytes written so far and 

is accessible to both the writer and the reader.  

• Fast Writer and Slow Reader Scenario 

Buffer Overflow Detection & Prevention: To avoid the writer overwriting unread 

data in the buffer, the library provides feature of blocking the writer (Process 1) when 

the buffer is full using semaphore. This blocking is temporary until the reader 

consumes enough data to free up space. Also, to prevent infinite blocking of the 

writer in cases where the reader is significantly slower or unresponsive, time-out is 

present for blocking. However, if data is indeed lost due to a very slow reader, the 

library ensures the next read after buffer-miss is handled gracefully. 

Features of the library 

1. Simple file-write like write call to write requested size of data to memory 
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2. Simple file-read like read call to read requested size of data from memory with 

blocking until requested size available 

3. Timed reading implemented to prevent indefinite blocking for data availability 

4. Data availability signalling by writer to readers blocked on requested data size 

5. Creation, initialization and clean-up of IPC resources through simple functions 

6. Debug modes with option to direct print to user provided log file 

7. Library also provide write-to-file option which when enabled writes the data written 

to memory to a user-provide file 

Implementation Details 

 

Figure 2: Internals of the data managed by library 

 

 

 

 

 

 

 

Figure 3: read/write API  
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Inputs from user of the library 

Inputs to be passed by writer 

• Data ID = Absolute 

path of (non-existing) file 

representing data to be 

written 

• Size of DATA-Shared 

memory segment (circular 

buffer) to be created 

• Writer-blocking-mode : 

enable/disable (default) 

block of writer on buffer full  

• Maximum time-out for 

blocking if writer is in 

blocking mode 

Figure 4: Input structure to be passed by writing process 

• Enable write of data to file, IPC Keys directory, Log File Pointer, Debug Mode  

  

Inputs to be passed by 

reader 

•  Data ID = Absolute 

path of (non-existing) file 

representing data to be 

written 

• Timed-read = enable 

time-out if requested data 

unavailable until   

• Time-out in microsecs 

for timed-read 

• Whether this reader 

should block writer 

Figure 5: Input structure to be passed by reading process 

• In case of buffer-miss, the record length to be used for aligning next read 

• Don’t-delete IPCS Flag – If set, underlying IPCs are NOT deleted on cleanup else 

IPCs are deleted (default) 

• IPC Keys directory, Log File Pointer, Debug Mode  
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Details of API functions 

Table 1: Details of API functions 

mg_write_init(&write_inp):  

• Validates inputs passed by user  

• Create and attach IPCs i.e. 

semaphore and metadata-shared 

memory segment (meta-shm) and 

attach the meta-shm to calling 

process (writer) 

• Create shared-memory segment for 

data (data-shm) with user-provided 

circular buffer size (segment-size), 

update this segment-size in meta-

shm and attach data-shm to calling 

process (writer) 

• Create zero-sized data-ID-file 

corresponding to user passed data-

ID 

• If write_to_file enabled, initialize 

writer-threads thread-pool, open 

the data-ID-file(fd) for writing 

mg_read_init(&read_inp): 

• Validates inputs passed by user 

• Busy-wait for availability of the data-

ID-file passed by user 

• Get & attach IPCs structures i.e., 

semaphore, meta-data segment to 

calling process (reader) 

• Get the size of data shared-memory 

segment (data-shm) from meta-data 

segment (meta-shm) and attach the 

data-shm to calling process (reader) 

• If this reader blocks writer, update the 

reader process id (reader-pid) in 

meta-data segment (meta-shm) 

 

mg_write(&write_inp, buf, count) 

• If write in “BLOCKING” mode i.e., 

blocks until reader reads, BLOCK 

for reader to read when buffer is 

full until space created or reader 

(reader-pid) terminates 

• Announce the portion of circular 

buffer about to be written for 

readers in meta-shm 

• Write “count” bytes of user 

provided data “buf” to data-shm 

circular shared-memory buffer 

• Update the total size (no. of bytes) 

available in data-shm circular 

buffer in meta-data segment 

• UNBLOCK readers blocked on 

zero-size 

• If write_to_file enabled by user, 

issue write to a thread in pool  

 

mg_read(&read_inp, buf, count) 

• Get the total-size of data available 

from meta-shm 

• BLOCK on zero-size  

• Before reading, check if any data-

missed (i.e., overwritten) 

• If missed, print number of bytes lost 

and read from a position ensuring 

read is record-aligned 

• read “count” bytes from the buffer 

based on data-availability. 

if request “count” bytes available, 

read and return 

if less than “count” bytes available, 

wait until “. complete” file found, 

writer-terminates or time-out occurs 

(for timed read) 

• If this reader blocks writer, 

UNBLOCK writer when required 

space created in buffer for writing 
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mg_write_cleanup(&write_inp) 

• If write_to_file enabled, do thread-

pool cleanup and close the data-ID-

file (fd),  

• detach meta-shm and data-shm 

shared-memory segments 

mg_read_cleanup(&read_inp) 

• detach meta-shm and data-shm 

shared-memory segments  

• delete IPCs except when don’t-

delete flag set by user 

 

 

IPC Keys Management 

The library uses System-V IPCs i.e., shared memory to implement the actual data sharing 

between processes, shared-memory for metadata and semaphore for mutual exclusion and 

signalling. System V IPCs require keys. To have generic mission-independent way of 

creating keys for IPC, data ID (See figures 4 and 5) requested by library users are unique 

file-paths which are used for IPC key-generation (using ftok) as follows: a)  “key_dir_path” 

user input in read/write input structures must be an existing path unique for real-time 

processing instance b)  Base name of “file_name” in read/write input which represents 

absolute path of the data-file . “key_dir_path” + “base_name(file_name)” is used to create 

3 distinct paths to create 3 IPC keys per file - 1 for Metadata Shared Memory Segment, 1 

for Semaphore and 1 for Actual data Shared Memory. These key values are stored in 

“key_dir_path” directory for reader-writer to agree on same key value and for subsequent 

clean-up. All processes must pass same “key_dir_path” so that cleanup can be done from 

single path. 

Testing: The library is implemented in C language and deployed as shared library. It was 

tested for correctness, dynamic scenarios and performance. Correctness means to establish 

that reading process has read the data exactly as written by writer. To check for correctness, 

test writer code was developed which writes the same data to file Wfile while writing it to 

memory using mwrite() and reader also writes the data read using mread() to file Rfile. The 

files Wfile and Rfile are compared to check if they are same. This correctness was tested 

with multiple test cases viz., reader and writer requested read-size and write-size, different 

read-size and write-size, read-size/write-size factor of internal circular buffer, read-

size/write-size not factor of internal circular buffer to capture boundary conditions. Dynamic 

scenarios such as slow reader-fast writer, slow writer-fast reader were also tested by putting 

random amount of sleep between successive read/write calls. This was to check whether 

buffer full condition was encountered by reader, whether writer (blocked) waited for reader 
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to read on buffer full (when blocking is enabled). If writer was set non-blocking and buffer-

overflow occurred, bytes-missed to overflow are printed for reader and next-read is aligned 

to correct position. The library is only meant for simplified data-exchange between 2 parallel 

processes. As such, it does not do any processing. So, testing the performance of library 

functions meant ensuring that the read/write to memory does not significantly contribute to 

execution time of the calling process. This was tested using 2-parallel processes– 1 writer 

and 1 reader running together in pipeline: writer invoked write call iteratively with a sleep 

of N (5.12ms) milliseconds, similarly reader invoked read call iteratively with a sleep of N 

milliseconds. Duration for Sleep + memory-write for write/ duration for memory-read + 

sleep duration was measured for each iteration and average duration was measured. This 

average was slightly more than sleep duration N (varied from 5.2 to 5.4 milliseconds). These 

test scenarios are ideal simulated scenarios for the propose of testing. Practical testing 

scenario (See results/discussion) is when all the processes involved in RT-processing are 

integrated and use library for data-exchange and the end time of last process in the pipeline 

closely matches with the end-time of the last data block pumped in the pipeline. 

 

Results and Discussion  

This library was successfully demonstrated for RT pre-processing of Cartosat-3. Cartosat-3 is 

a third generation of cartographic imaging satellite, weighing around 1500 kg and launched 

into 505 km Polar Sun Synchronous orbit in Nov 2019 by Indian Space Research Organization. 

It has a panchromatic resolution of ~0.28 meter and multi-spectral resolution of ~1.13 meter 

which is a major improvement from the previous payloads in the Cartosat-2 series. Potential 

uses include weather mapping, cartography, disaster and other critical applications. 

Panchromatic (PAN) payload data rate is around 18Gbps and multi-spectral (MX) payload data 

rate is of 4.5Gbps. The total payload data rate is around 22.5 Gbps. Data transmission from 

satellite is either in X-Band or Ka- Band. In case of X-Band, data is transmitted in two streams 

while in Ka band, data is transmitted in six streams. Each stream downlink rate is 480 Mbps. 

Therefore X-band downlink rate is 960 Mbps, whereas Ka- Band downlink rate is 2.88 Gbps. 

Data rate and Data Volume for Ka band acquisition: 

• Average Dumping Duration for Ka – Band = 5 min = 300 seconds 

• Data Rate (Ka Band): 480 Mbps * 6 Streams ~ 400Mbps * 6 = 2.4 Gbps = 300MBps;  

• Acquired Data Volume: Raw data per pass: (300 MBps * 300 sec)/ 8 = 90GB 
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Sub 

• Processed and decompressed data per pass (nominal compression ratio is 5) = (90 * 5) 

=450GB 

Six streams of Cartosat-3 data are acquired and processed in real time on identified high-end 

server to generate Level-0 products (i.e., Level-0 Raw data) for each of the sensors. The RT-

processing is done as part of RT-processing framework which comprises of scheduler (that 

instantiates & monitors all configured RT-processes), memory -library for data exchange 

between processes and various configuration files. The memory-library forms the core of the 

framework that enables RT-data exchange. This section describes the payload data pre-

processing pipeline realized using the library. The payload data pre-processing pipeline to 

generate Level-0 products comprises of following processes (stages) – Data Acquisition, 

RSDecodingN CADUDataExtraction (CADUExt), SpacePacketsExtraction (APIDExt), Data 

Align-Merge & Archival (DAMAR), Decompression, SubsampledVideoDataExtraction 

(SVDExt) and QuickLookDisplay. 

 

 

Figure 6: Cartosat-3 Payload data pre-processing pipeline 

The data types and no. of instances of each type involved in the above pipeline for 

Cartosat3: 

• Raw=Raw data as acquired from hardware = 6 no.  

• CADU=Channel Access Data Unit data extracted from Decoded data = 16 (8 PAN, 8 

MX) 

• APID=Application Process Identifier space packets data extracted from CADU= 120 

(24 PAN, 96 MX) 

• M_APID=Merged and aligned APID data= 5 (1 PAN, 4 MX)  
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• Dcmp= Decompressed data = 125 (120 APID-wise PAN + MX & 1 PAN, 4 MX) 

• Sub=Subsampled data = 5 (1 PAN, 4 MX) 

Total data shared memory (data-shm) segments involved for preprocessing = 6 + 16 + 120 

+ 5 + 125 + 5 = 277. For each data-shm, there is one meta-shm and one semaphore set used. 

Sizing of data-shm segments: Each type of data except decompressed & subsampled data is 

generated at the downlink rate of 300MBps. Decompressed data is generated at 5 times the 

download rate and subsampled at 1/4th of decompressed data rate. Depending on the data-

type, the data-shared memory segment size is configured large enough to hold data for 

duration sufficient for next-reader process to consume it. 

• Total Raw data ~2min = 2x60x300 = 36 GB   

• Total CADU data ~30secs = 30x300 = 9GB 

• Total APID data ~30 secs = 30x300 = 9GB 

• Total Merged APID data ~ 2min = 2x60x300 = 36GB 

• Decompressed data ~30 secs = 30x300x5 =45GB 

• Subsampled data ~30 secs = (30x300x5)/4 ~ 11.25GB 

Raw data and merged-APID data sizes are allocated so as to buffer upto 2-minutes of data 

as the subsequent process i.e., RSDecodeCADUExt and Decompression are compute-

intensive and may have variability in processing time depending on data. Total shared-

memory size allotted for data-shm segments = 146.25GB 

Test system configuration: Server used for RT-processing - Intel Xeon(R) Gold 6154 

@3.0Ghz, 4 CPU 18 Core (144 logical cores) server with 512 GB of memory & Red Hat 

Enterprise Linux version 7.5 

With the above configurations, for an average pass duration of 5 mins, best case RT-

preprocessing time was within 30 seconds from LOS and worst case was 2 mins from LOS 

(loss of signal). 

 

Limitations/Constraints:  While the memory-based API simplifies and optimizes inter-

process communication (IPC) through efficient shared memory management, the overall 

success of real-time (RT) processing is highly dependent on two additional factors: 

• Efficiency of Process Implementation: The performance of RT-processing is 

significantly influenced by how well each individual process in the pipeline is coded. 

Optimized algorithms, efficient use of memory and CPU resources, and minimizing 
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latency in data-handling routines are critical. Poorly optimized processes can become 

bottlenecks in the pipeline, undermining the benefits of the memory-based IPC library. 

• Server Configuration: The computational capacity and configuration of the server 

hosting these processes also play a pivotal role. RT-processing of high-data-rate 

satellite data demands high-end servers with sufficient CPU cores, RAM, and fast 

storage to ensure smooth operation. Without a powerful server configuration, even an 

optimized library cannot fully meet the stringent demands of real-time processing, 

particularly when dealing with high data rates such as those generated by satellites like 

Cartosat-3. 

Thus, while the library abstracts IPC complexity, ensuring real-time performance depends on 

both the quality of process coding and the hardware infrastructure on which the system 

operates. 

Conclusion and Recommendation  

The proposed memory-based API simplifies and optimizes inter-process communication 

(IPC) for real-time processing of high-data-rate satellite data. By abstracting complex 

System V IPC mechanisms into straightforward read/write operations, the library reduces 

development complexity, allowing developers to focus on core processing tasks. The use of 

shared memory as a circular buffer and semaphores for synchronization ensures efficient 

and reliable data exchange between parallel processes. The library also accommodates 

variable data block sizes, providing flexibility in handling diverse satellite data formats. 

However, while the library significantly streamlines IPC, the overall performance of real-

time processing is heavily dependent on how well individual processes are optimized and 

the computational resources of the server used for processing. To ensure the library’s 

robustness and efficiency in diverse real-world scenarios, comprehensive testing and 

benchmarking should be performed. This would allow for better understanding of the 

library's limits under different processing loads and data rates. 
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