
 Asian Conference on Remote

Sensing (ACRS 2024)

Page 1 of 15

Memory-based API for real-time processing of high-data rate satellites

Adiba Firdous Nizami 1*, Md Irfan Salauddin.2, Manikumar Vedantam.3, Prakash Chauhan4

1 Scientist/Engineer SF

2 Scientist/Engineer SF

3Group Head, Satellite Real-Time Data Processing Group

4 Director, National Remote Sensing Centre

1,2,3,4 National Remote Sensing Centre, ISRO, India

adiba_fn@nrsc.gov.in

Abstract: Real-time processing of satellite data necessitates pipelined parallelism wherein a block of

raw-data is transformed into final-processed data block as it moves from one stage of pipeline to

another. For high-data rate satellites (like Cartosat-3 with 2.88 Gbps), the rate at which the blocks-of-

data is generated is very high. Hence, efficient inter-process communication (IPC) for seamless data

exchange between parallel processes is necessary for real-time processing. Shared memory is the

fastest IPC mechanisms but often introduce complexity due to their intricate nature. Their direct use

can be challenging for developers to learn and use effectively, leading to errors and time-consuming

debugging. This paper addresses this challenge by proposing a novel, memory-based read-write API

specifically designed for real-time processing of satellite data. This API offers a developer-friendly,

file-like interface that abstracts complex IPC mechanisms, enabling efficient data exchange. It provides

flexible data-exchange between processes like that achieved using a file with comprehensive features

for robust data handling such as blocking reads, timed-reading, unblocking writes to accommodate

growing-satellite data acquired during ground station visibility. The API also simplifies IPC resource

management with a well-defined interface and offers multiple debug modes for streamlined

development. It implements abstraction for shared memory IPC handling buffer-overflow for growing

satellite data thereby enhancing reliability and improving flexibility. By streamlining complex IPC

tasks, this API significantly reduces development time and effort enabling developers to focus on core-

algorithms while improving the overall processing efficiency of real-time satellite data systems and

making it an invaluable tool for real-time processing application.

Keywords: Abstraction, IPC, Pipelined parallelism, Real-time Processing, Shared Memory

 Asian Conference on Remote

Sensing (ACRS 2024)

Page 2 of 15

Introduction

Real-time satellite data processing is crucial for applications that require immediate access

to data, such as disaster response, emergency management, and other time-sensitive

scenarios. Near real-time utilization of satellite data allows for faster decision-making and

more effective actions during critical situations. To handle the high-data rate efficiently in

real time, the satellite's ground systems and data processing infrastructure need to be

equipped with scalable, low-latency inter-process communication (IPC) mechanisms,

memory management strategies, and parallel/distributed computing approaches. Such

infrastructure allows for rapid processing, storage, and dissemination of satellite data to

applications that demand immediate access, like emergency management, defense, or

environmental monitoring. Of the different components that make real-time (RT)

processing possible, one critical aspect is the IPC between processes running on a

processing node, as it enables seamless data exchange. This paper focuses on the importance

of IPC in real-time data handling.

To ensure that high-data-rate satellite data can be processed in real time, one effective

strategy is pipelined parallelism, where different stages of the processing pipeline handle

separate blocks of data simultaneously. This approach optimizes both throughput and

latency by distributing the workload across multiple stages, allowing for continuous data

flow. However, for such pipelined parallelism to function effectively, efficient IPC between

stages is essential to ensure that data is passed quickly and reliably from one process to the

next. While traditional IPC mechanisms can offer the necessary speed, they are often

complex, making implementation and management challenging. Therefore, the objective of

this paper is to propose a memory-based API that simplifies IPC for real-time processing,

enhancing both efficiency and reducing development complexity. It presents design of the

library that abstracts the complexity of setting up and managing shared memory,

synchronization mechanisms, and buffer management. By using the simple file-like

read/write interface that this library provides, developers can focus on the processing logic

rather than the intricate details of IPC, thereby reducing complexity and development time.

 Asian Conference on Remote

Sensing (ACRS 2024)

Page 3 of 15

Literature Review

The increasing volume of satellite data, with advancements in high-resolution imaging

satellites like Cartosat-3, has introduced significant challenges in real-time data processing.

Cartosat-3 a third generation, agile and advanced satellite, with very high-resolution imaging

capability downlinks data at rates of 2.88 Gbps. Such rates necessitate efficient real-time (RT)

processing systems to handle the data volumes effectively. Research in this area predominantly

focuses on distributed systems to process large datasets using scalable cloud or edge computing

frameworks. However, these solutions introduce complexities and resource requirements that

may not always be necessary, particularly in use cases where the data can be processed on a

single node.

Many applications, such as disaster response, environmental monitoring, and defense, require

satellite data to be processed and acted upon in real time. While the literature has explored real-

time satellite data processing in distributed systems, there is limited research on how single-

node systems can meet these real-time demands without the overhead of distributed

frameworks. In cases where low-latency processing on dedicated single-node systems is

sufficient, optimizing the data exchange between parallel processes becomes crucial.

Inter-process communication (IPC) is a core component of real-time processing systems,

especially for parallel processes running on a single node. Traditional IPC mechanisms,

including pipes, message queues, and shared memory, have been widely studied for their role

in facilitating communication between processes within the same machine. While shared

memory offers the advantage of low-latency data exchange, its implementation and

management are complex especially in high-throughput, real-time environments.

Research on IPC has often focused on their use in distributed systems, where the emphasis is

on managing communication between nodes over a network. However, in the context of

parallel processing on single-node, there is limited discussion on simplifying IPC for real-time

performance without distributed processing. Studies that do address IPC on single node

environments frequently highlight the difficulties of synchronization, memory management,

and resource contention. These challenges make traditional IPC usage cumbersome, especially

in real-time satellite data processing applications where efficiency and simplicity are crucial.

 Asian Conference on Remote

Sensing (ACRS 2024)

Page 4 of 15

Memory-based IPC, particularly through shared memory is an efficient method for high-speed

communication between parallel processes on a single node. However, traditional shared

memory implementations require developers to manually manage memory allocation,

synchronization (e.g., using semaphores or mutexes), and avoid race conditions. There is a

clear need for solutions that abstract these low-level operations, enabling developers to focus

on application logic rather than the intricacies of memory management.

Pipelined parallelism is a widely used approach for optimizing data processing throughput and

latency in real-time systems. By dividing the data processing workflow into distinct stages,

each stage can operate on separate blocks of data in parallel, ensuring continuous data flow.

This architecture has been particularly effective in high-performance computing (HPC)

environments and real-time systems, where it allows for the concurrent processing of data

streams. However, efficient data exchange between stages in a pipelined parallel system relies

heavily on the underlying IPC mechanism. Therefore, an optimized, simplified IPC approach

that can handle high-throughput data exchange in a pipelined architecture is needed for real-

time satellite data processing on a single node.

Libraries like POSIX shared memory and System V IPC offer standardized approaches to

managing shared memory, message queues, and semaphores. However, these libraries still

require significant expertise to implement and manage effectively in real-time systems. Recent

research has explored higher-level abstractions and APIs designed to simplify IPC, but these

solutions often target distributed computing environments and do not fully address the specific

challenges faced by single-node, real-time systems. This paper proposes an API that simplifies

IPC by offering a file-like read/write interface, abstracting the complexity of traditional shared

memory implementations. The proposed API is well-suited for pipelined parallel processing,

providing a streamlined approach to data exchange between parallel processes running on the

same machine.

 Asian Conference on Remote

Sensing (ACRS 2024)

Page 5 of 15

Methodology

Design of the library

The core requirement for the proposed library was to facilitate efficient data exchange

between parallel processes using a simplified interface. Specifically, Process 1 writes M

bytes of data (of datatype1) into shared memory using the APIs mwrite() call, while Process

2 reads N bytes of data (of datatype1) using the APIs mread() call. Importantly, M and N

can be different, and the library should ensure that if Process 2 requests more data than is

available (N > M), then it automatically makes Process 2 wait until the required amount of

data is available. This feature provides flexibility in data handling to both processes 1 and 2

while abstracting the complexities of internal memory shared between them and the

synchronization required.

Figure 1: Typical sequence of library/API calls

Design Considerations

Given the constraints and requirements of real-time processing on RAM-limited systems,

the following design decisions were made to optimize inter-process communication using

System V shared memory IPC:

• Shared memory implemented as circular-buffer: To efficiently handle the memory

limitations of the system, shared memory is implemented as a circular buffer. This

approach allows for continuous writing and reading of data without exceeding the

memory constraints, even when high volumes of data are being processed.

 Asian Conference on Remote

Sensing (ACRS 2024)

Page 6 of 15

• Synchronization of shared memory: The circular buffer requires explicit

synchronization between the writer (Process 1) and the reader (Process 2) to ensure

mutual exclusion. System-V semaphore is used by library for this purpose to prevent

race condition. The semaphore is employed to protect specific portions of shared

memory being accessed. This ensures that while one process is writing, the other

process cannot access the same memory segment, thus preventing data corruption

When reading process (say Process 2) attempts to read more data than is currently

available in the shared memory, it is blocked until the required data becomes

available. This blocking is managed by a semaphore that signals when sufficient data

has been written (say by Process 1)

• Variable Read/Write block-size in circular Buffer: The amount of data being written

by a process (say process 1) may be M bytes every time but for the last buffer being

processed, the number of bytes may be less than M. Similarly, the reading process

(say process 2) may request N bytes for read. So, the size of block being written to

or read from circular buffer for a given data type is variable i.e. not fixed.

• End-of-Data Indication for Reader

Termination Handling: The library includes mechanisms to indicate both normal and

abnormal termination of the writing process so that reading process (Process 2) is

aware of whether more data can be expected or if the writer has terminated.

Data Availability: A metadata structure is maintained within a separate shared

memory segment. This metadata tracks the total number of bytes written so far and

is accessible to both the writer and the reader.

• Fast Writer and Slow Reader Scenario

Buffer Overflow Detection & Prevention: To avoid the writer overwriting unread

data in the buffer, the library provides feature of blocking the writer (Process 1) when

the buffer is full using semaphore. This blocking is temporary until the reader

consumes enough data to free up space. Also, to prevent infinite blocking of the

writer in cases where the reader is significantly slower or unresponsive, time-out is

present for blocking. However, if data is indeed lost due to a very slow reader, the

library ensures the next read after buffer-miss is handled gracefully.

Features of the library

1. Simple file-write like write call to write requested size of data to memory

 Asian Conference on Remote

Sensing (ACRS 2024)

Page 7 of 15

2. Simple file-read like read call to read requested size of data from memory with

blocking until requested size available

3. Timed reading implemented to prevent indefinite blocking for data availability

4. Data availability signalling by writer to readers blocked on requested data size

5. Creation, initialization and clean-up of IPC resources through simple functions

6. Debug modes with option to direct print to user provided log file

7. Library also provide write-to-file option which when enabled writes the data written

to memory to a user-provide file

Implementation Details

Figure 2: Internals of the data managed by library

Figure 3: read/write API

 Asian Conference on Remote

Sensing (ACRS 2024)

Page 8 of 15

Inputs from user of the library

Inputs to be passed by writer

• Data ID = Absolute

path of (non-existing) file

representing data to be

written

• Size of DATA-Shared

memory segment (circular

buffer) to be created

• Writer-blocking-mode :

enable/disable (default)

block of writer on buffer full

• Maximum time-out for

blocking if writer is in

blocking mode

Figure 4: Input structure to be passed by writing process

• Enable write of data to file, IPC Keys directory, Log File Pointer, Debug Mode

Inputs to be passed by

reader

• Data ID = Absolute

path of (non-existing) file

representing data to be

written

• Timed-read = enable

time-out if requested data

unavailable until

• Time-out in microsecs

for timed-read

• Whether this reader

should block writer

Figure 5: Input structure to be passed by reading process

• In case of buffer-miss, the record length to be used for aligning next read

• Don’t-delete IPCS Flag – If set, underlying IPCs are NOT deleted on cleanup else

IPCs are deleted (default)

• IPC Keys directory, Log File Pointer, Debug Mode

 Asian Conference on Remote

Sensing (ACRS 2024)

Page 9 of 15

Details of API functions

Table 1: Details of API functions

mg_write_init(&write_inp):

• Validates inputs passed by user

• Create and attach IPCs i.e.

semaphore and metadata-shared

memory segment (meta-shm) and

attach the meta-shm to calling

process (writer)

• Create shared-memory segment for

data (data-shm) with user-provided

circular buffer size (segment-size),

update this segment-size in meta-

shm and attach data-shm to calling

process (writer)

• Create zero-sized data-ID-file

corresponding to user passed data-

ID

• If write_to_file enabled, initialize

writer-threads thread-pool, open

the data-ID-file(fd) for writing

mg_read_init(&read_inp):

• Validates inputs passed by user

• Busy-wait for availability of the data-

ID-file passed by user

• Get & attach IPCs structures i.e.,

semaphore, meta-data segment to

calling process (reader)

• Get the size of data shared-memory

segment (data-shm) from meta-data

segment (meta-shm) and attach the

data-shm to calling process (reader)

• If this reader blocks writer, update the

reader process id (reader-pid) in

meta-data segment (meta-shm)

mg_write(&write_inp, buf, count)

• If write in “BLOCKING” mode i.e.,

blocks until reader reads, BLOCK

for reader to read when buffer is

full until space created or reader

(reader-pid) terminates

• Announce the portion of circular

buffer about to be written for

readers in meta-shm

• Write “count” bytes of user

provided data “buf” to data-shm

circular shared-memory buffer

• Update the total size (no. of bytes)

available in data-shm circular

buffer in meta-data segment

• UNBLOCK readers blocked on

zero-size

• If write_to_file enabled by user,

issue write to a thread in pool

mg_read(&read_inp, buf, count)

• Get the total-size of data available

from meta-shm

• BLOCK on zero-size

• Before reading, check if any data-

missed (i.e., overwritten)

• If missed, print number of bytes lost

and read from a position ensuring

read is record-aligned

• read “count” bytes from the buffer

based on data-availability.

if request “count” bytes available,

read and return

if less than “count” bytes available,

wait until “. complete” file found,

writer-terminates or time-out occurs

(for timed read)

• If this reader blocks writer,

UNBLOCK writer when required

space created in buffer for writing

 Asian Conference on Remote

Sensing (ACRS 2024)

Page 10 of 15

mg_write_cleanup(&write_inp)

• If write_to_file enabled, do thread-

pool cleanup and close the data-ID-

file (fd),

• detach meta-shm and data-shm

shared-memory segments

mg_read_cleanup(&read_inp)

• detach meta-shm and data-shm

shared-memory segments

• delete IPCs except when don’t-

delete flag set by user

IPC Keys Management

The library uses System-V IPCs i.e., shared memory to implement the actual data sharing

between processes, shared-memory for metadata and semaphore for mutual exclusion and

signalling. System V IPCs require keys. To have generic mission-independent way of

creating keys for IPC, data ID (See figures 4 and 5) requested by library users are unique

file-paths which are used for IPC key-generation (using ftok) as follows: a) “key_dir_path”

user input in read/write input structures must be an existing path unique for real-time

processing instance b) Base name of “file_name” in read/write input which represents

absolute path of the data-file . “key_dir_path” + “base_name(file_name)” is used to create

3 distinct paths to create 3 IPC keys per file - 1 for Metadata Shared Memory Segment, 1

for Semaphore and 1 for Actual data Shared Memory. These key values are stored in

“key_dir_path” directory for reader-writer to agree on same key value and for subsequent

clean-up. All processes must pass same “key_dir_path” so that cleanup can be done from

single path.

Testing: The library is implemented in C language and deployed as shared library. It was

tested for correctness, dynamic scenarios and performance. Correctness means to establish

that reading process has read the data exactly as written by writer. To check for correctness,

test writer code was developed which writes the same data to file Wfile while writing it to

memory using mwrite() and reader also writes the data read using mread() to file Rfile. The

files Wfile and Rfile are compared to check if they are same. This correctness was tested

with multiple test cases viz., reader and writer requested read-size and write-size, different

read-size and write-size, read-size/write-size factor of internal circular buffer, read-

size/write-size not factor of internal circular buffer to capture boundary conditions. Dynamic

scenarios such as slow reader-fast writer, slow writer-fast reader were also tested by putting

random amount of sleep between successive read/write calls. This was to check whether

buffer full condition was encountered by reader, whether writer (blocked) waited for reader

 Asian Conference on Remote

Sensing (ACRS 2024)

Page 11 of 15

to read on buffer full (when blocking is enabled). If writer was set non-blocking and buffer-

overflow occurred, bytes-missed to overflow are printed for reader and next-read is aligned

to correct position. The library is only meant for simplified data-exchange between 2 parallel

processes. As such, it does not do any processing. So, testing the performance of library

functions meant ensuring that the read/write to memory does not significantly contribute to

execution time of the calling process. This was tested using 2-parallel processes– 1 writer

and 1 reader running together in pipeline: writer invoked write call iteratively with a sleep

of N (5.12ms) milliseconds, similarly reader invoked read call iteratively with a sleep of N

milliseconds. Duration for Sleep + memory-write for write/ duration for memory-read +

sleep duration was measured for each iteration and average duration was measured. This

average was slightly more than sleep duration N (varied from 5.2 to 5.4 milliseconds). These

test scenarios are ideal simulated scenarios for the propose of testing. Practical testing

scenario (See results/discussion) is when all the processes involved in RT-processing are

integrated and use library for data-exchange and the end time of last process in the pipeline

closely matches with the end-time of the last data block pumped in the pipeline.

Results and Discussion

This library was successfully demonstrated for RT pre-processing of Cartosat-3. Cartosat-3 is

a third generation of cartographic imaging satellite, weighing around 1500 kg and launched

into 505 km Polar Sun Synchronous orbit in Nov 2019 by Indian Space Research Organization.

It has a panchromatic resolution of ~0.28 meter and multi-spectral resolution of ~1.13 meter

which is a major improvement from the previous payloads in the Cartosat-2 series. Potential

uses include weather mapping, cartography, disaster and other critical applications.

Panchromatic (PAN) payload data rate is around 18Gbps and multi-spectral (MX) payload data

rate is of 4.5Gbps. The total payload data rate is around 22.5 Gbps. Data transmission from

satellite is either in X-Band or Ka- Band. In case of X-Band, data is transmitted in two streams

while in Ka band, data is transmitted in six streams. Each stream downlink rate is 480 Mbps.

Therefore X-band downlink rate is 960 Mbps, whereas Ka- Band downlink rate is 2.88 Gbps.

Data rate and Data Volume for Ka band acquisition:

• Average Dumping Duration for Ka – Band = 5 min = 300 seconds

• Data Rate (Ka Band): 480 Mbps * 6 Streams ~ 400Mbps * 6 = 2.4 Gbps = 300MBps;

• Acquired Data Volume: Raw data per pass: (300 MBps * 300 sec)/ 8 = 90GB

 Asian Conference on Remote

Sensing (ACRS 2024)

Page 12 of 15

Sub

• Processed and decompressed data per pass (nominal compression ratio is 5) = (90 * 5)

=450GB

Six streams of Cartosat-3 data are acquired and processed in real time on identified high-end

server to generate Level-0 products (i.e., Level-0 Raw data) for each of the sensors. The RT-

processing is done as part of RT-processing framework which comprises of scheduler (that

instantiates & monitors all configured RT-processes), memory -library for data exchange

between processes and various configuration files. The memory-library forms the core of the

framework that enables RT-data exchange. This section describes the payload data pre-

processing pipeline realized using the library. The payload data pre-processing pipeline to

generate Level-0 products comprises of following processes (stages) – Data Acquisition,

RSDecodingN CADUDataExtraction (CADUExt), SpacePacketsExtraction (APIDExt), Data

Align-Merge & Archival (DAMAR), Decompression, SubsampledVideoDataExtraction

(SVDExt) and QuickLookDisplay.

Figure 6: Cartosat-3 Payload data pre-processing pipeline

The data types and no. of instances of each type involved in the above pipeline for

Cartosat3:

• Raw=Raw data as acquired from hardware = 6 no.

• CADU=Channel Access Data Unit data extracted from Decoded data = 16 (8 PAN, 8

MX)

• APID=Application Process Identifier space packets data extracted from CADU= 120

(24 PAN, 96 MX)

• M_APID=Merged and aligned APID data= 5 (1 PAN, 4 MX)

 Asian Conference on Remote

Sensing (ACRS 2024)

Page 13 of 15

• Dcmp= Decompressed data = 125 (120 APID-wise PAN + MX & 1 PAN, 4 MX)

• Sub=Subsampled data = 5 (1 PAN, 4 MX)

Total data shared memory (data-shm) segments involved for preprocessing = 6 + 16 + 120

+ 5 + 125 + 5 = 277. For each data-shm, there is one meta-shm and one semaphore set used.

Sizing of data-shm segments: Each type of data except decompressed & subsampled data is

generated at the downlink rate of 300MBps. Decompressed data is generated at 5 times the

download rate and subsampled at 1/4th of decompressed data rate. Depending on the data-

type, the data-shared memory segment size is configured large enough to hold data for

duration sufficient for next-reader process to consume it.

• Total Raw data ~2min = 2x60x300 = 36 GB

• Total CADU data ~30secs = 30x300 = 9GB

• Total APID data ~30 secs = 30x300 = 9GB

• Total Merged APID data ~ 2min = 2x60x300 = 36GB

• Decompressed data ~30 secs = 30x300x5 =45GB

• Subsampled data ~30 secs = (30x300x5)/4 ~ 11.25GB

Raw data and merged-APID data sizes are allocated so as to buffer upto 2-minutes of data

as the subsequent process i.e., RSDecodeCADUExt and Decompression are compute-

intensive and may have variability in processing time depending on data. Total shared-

memory size allotted for data-shm segments = 146.25GB

Test system configuration: Server used for RT-processing - Intel Xeon(R) Gold 6154

@3.0Ghz, 4 CPU 18 Core (144 logical cores) server with 512 GB of memory & Red Hat

Enterprise Linux version 7.5

With the above configurations, for an average pass duration of 5 mins, best case RT-

preprocessing time was within 30 seconds from LOS and worst case was 2 mins from LOS

(loss of signal).

Limitations/Constraints: While the memory-based API simplifies and optimizes inter-

process communication (IPC) through efficient shared memory management, the overall

success of real-time (RT) processing is highly dependent on two additional factors:

• Efficiency of Process Implementation: The performance of RT-processing is

significantly influenced by how well each individual process in the pipeline is coded.

Optimized algorithms, efficient use of memory and CPU resources, and minimizing

 Asian Conference on Remote

Sensing (ACRS 2024)

Page 14 of 15

latency in data-handling routines are critical. Poorly optimized processes can become

bottlenecks in the pipeline, undermining the benefits of the memory-based IPC library.

• Server Configuration: The computational capacity and configuration of the server

hosting these processes also play a pivotal role. RT-processing of high-data-rate

satellite data demands high-end servers with sufficient CPU cores, RAM, and fast

storage to ensure smooth operation. Without a powerful server configuration, even an

optimized library cannot fully meet the stringent demands of real-time processing,

particularly when dealing with high data rates such as those generated by satellites like

Cartosat-3.

Thus, while the library abstracts IPC complexity, ensuring real-time performance depends on

both the quality of process coding and the hardware infrastructure on which the system

operates.

Conclusion and Recommendation

The proposed memory-based API simplifies and optimizes inter-process communication

(IPC) for real-time processing of high-data-rate satellite data. By abstracting complex

System V IPC mechanisms into straightforward read/write operations, the library reduces

development complexity, allowing developers to focus on core processing tasks. The use of

shared memory as a circular buffer and semaphores for synchronization ensures efficient

and reliable data exchange between parallel processes. The library also accommodates

variable data block sizes, providing flexibility in handling diverse satellite data formats.

However, while the library significantly streamlines IPC, the overall performance of real-

time processing is heavily dependent on how well individual processes are optimized and

the computational resources of the server used for processing. To ensure the library’s

robustness and efficiency in diverse real-world scenarios, comprehensive testing and

benchmarking should be performed. This would allow for better understanding of the

library's limits under different processing loads and data rates.

 Asian Conference on Remote

Sensing (ACRS 2024)

Page 15 of 15

References

Daryl A. Swade and James F. Rose. OPUS: A flexible pipeline data‐processing

environment. In Proceedings of the AIAA/USU Conference on Small Satellites. September

1998.

Downey, A. (2016). The little book of semaphores (2nd ed.). Green Tea Press.

https://greenteapress.com/semaphores/LittleBookOfSemaphores.pdf

Indian Space Research Organization. (2019). PSLV-C47 launch kit.

https://www.isro.gov.in/media_isro/pdf/Missions/PSLVC47/PSLV_C47LaunchKit_cdr.pd

f

JáJá, J. (1992). An introduction to parallel algorithms. Addison Wesley Longman Publishing

Co., Inc.

Patterson, D. (n.d.). Pattern: Barrier synchronization. Berkeley EECS Patterns.

https://patterns.eecs.berkeley.edu/?page_id=542

Raj, R. (n.d.). Software design: What is abstraction? Spring Boot Tutorial.

https://www.springboottutorial.com/software-design-what-is-abstraction

Shamsudeen, D. (2018). A Study on Inter process Communications in Distributed Computer

systems.

Stevens, W. R. (1999). UNIX network programming. Volume 2, Interprocess

communications (2nd edition). Addison Wesley Longman Singapore Pte. Ltd.

The New Stack. (2021, May 5). Why your code needs abstraction layers. The New Stack.

https://thenewstack.io/why-your-code-needs-abstraction-layers/

X. Sun, B. Li, T. Shi, Y. Hu, X. Yang and Y. Song, "Real-time Processing for Remote

Sensing Satellite Data Based on Stream Computing," 2019 IEEE International Conference

on Signal, Information and Data Processing (ICSIDP), Chongqing, China, 2019, pp. 1-8,

doi: 10.1109/ICSIDP47821.2019.9173437.

Zhang, Yang & Yu, Dan & Ma, Shilong. (2011). Researches on real-time satellite data flow

processing based on file buffer. 3. 1768-1774. 10.1109/ICNC.2011.6022348.

C.2011.6022348. https://www.scaler.com/topics/operating-system/inter-process-

communication-in-os/ https://www.scaler.com/topics/operating-system/inter-process-

communication-in-os/ https://www.scaler.com/topics/operating-system/inter-process-

communication-in-os/ https://www.scaler.com/topics/operating-system/inter-process-

communication-in-os/ https://www.scaler.com/topics/operating-system/inter-process-

communication-in-os/ https://www.scaler.com/topics/operating-system/inter-process-

communication-in-os/

https://greenteapress.com/semaphores/LittleBookOfSemaphores.pdf
https://www.isro.gov.in/media_isro/pdf/Missions/PSLVC47/PSLV_C47LaunchKit_cdr.pdf
https://www.isro.gov.in/media_isro/pdf/Missions/PSLVC47/PSLV_C47LaunchKit_cdr.pdf
https://patterns.eecs.berkeley.edu/?page_id=542
https://www.springboottutorial.com/software-design-what-is-abstraction
https://thenewstack.io/why-your-code-needs-abstraction-layers/

