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Abstract : With advancements in photogrammetry and computer vision, optical point clouds generated 

by stereo matching are widely used. However, processing large point cloud data consumes significant 

time and storage, necessitating data reduction while maintaining geometric accuracy. Existing 

simplification algorithms often rely on empirical rules and cannot adapt to regional characteristics. 

This study enhances a method for point cloud simplification using edge, feature, and non-feature points. 

The improvement is that the neighborhood size for each point is adaptively determined based on point 

cloud characteristics. First, the topological structure of the point cloud is established, and adaptive 

neighborhood size is determined using curvature features and entropy from Principal Component 

Analysis (PCA). The point cloud data is divided into sparse and regular areas, and different 

neighborhood calculation methods are applied to each area. A partitioning strategy simplifies the point 

cloud, with edge points extracted using normal vector angle differences and a region-growing 

segmentation method dividing the point cloud into feature and non-feature regions. In each feature 

region, points are traversed, and their importance is calculated by summing weighted differences in 

normal vectors, projection distances, spatial distances, and curvature differences with their 

neighborhoods. Each feature point's importance is compared to a threshold; if greater, the point is 

retained; if less, it is combined with the non-feature region as a non-feature point, and the number of 

non-feature points to retain is calculated by taking the ratio of local curvature to global curvature into 

consideration. Finally, edge, feature, and non-feature points are combined as the simplified point cloud. 

Preliminary experimental results indicate that this method effectively simplifies point clouds while 

preserving features, indeed resulting in light point clouds with quality geometric structure and content. 

Keywords: Feature preservation, Point cloud simplification, Principal component analysis, 

Region growing segmentation, Self-adaptive neighborhood  

 
 

Introduction  

With the advancement of technology, point clouds contain redundant data, which consumes 

time and storage space. Therefore, it has become necessary to reduce the number of points 

in the point cloud. However, excessive reduction can result in the loss of important features. 

As shown in Figure 1, the red circle illustrates that excessive point reduction leads to the 

inability to retain point cloud features. The main purpose of point cloud simplification is to 
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reduce the amount of data while preserving feature points, such as edges, sharp angles, 

surface transitions, and high curvature areas (Chen & Yue, 2016). This study will focus on 

optical point clouds, and evaluate the importance of shape factors by quantifying geometric 

features to effectively preserve features while simplifying the number of points.  

 

Source: (Chen et al., 2023) 

The Results Under Different Simplification Rates.  

Literature Review  

In point cloud simplification, the process is mainly divided into mesh-based simplification 

and point-based simplification (Chen et al., 2023) 

a. Mesh-Based Simplification 

Mesh-based simplification methods involve reconstructing point cloud meshes, such as 

vertex merging and subdivision (Tang, 2007). Luebke (2001) applied mesh compression to 

simplify point clouds. Martin et al. (1997) uniformly divided the point cloud into grids, and 

replaced all points with the grid's centroid. Although this approach is simple, it results in 

the loss of important features. Wang et al. (2007) used an octree to retain the point closest 

to the centroid in leaf nodes. This method is fast but struggles to preserve features. Therefore, 

mesh construction is efficient for small-scale point clouds but resource-intensive for large-

scale ones. 

b. Point-Based Simplification 

Point-based simplification methods simplify based on point features. They typically use 

parameters to identify key feature points such as curvature and normal angles (Chen et al., 

2023). Due to the independent nature of point clouds, a topological structure must first be 

established to create relationships between points. This approach is more efficient as it 

avoids the need to reconstruct point cloud meshes. 

c. Point Importance-Based Methods  
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The mesh-based simplification method incurs high computational cost, so point-based 

importance methods are more commonly used. These methods reduce point cloud data by 

retaining important points, with the key being determining the importance of each point. 

Point importance is typically evaluated based on geometric information such as normals, 

curvature, point spacing, and density. Dyn et al. (2008) used non-negative functions to 

remove unimportant points and updated the importance of neighboring points, achieving 

low error but slow processing speed. Weinmann et al. (2015) derived 3D features such as 

linearity, planarity, and curvature from local 3D neighborhoods. Ji et al. (2019) calculated 

point cloud importance using normal vector difference, projection distance, spatial distance, 

and curvature difference. Chen et al. (2023) extracted curvature and normal angle as 

features, while Song et al. (2009) quantified point information or redundancy based on 

geometric contributions and removed redundant points. Gan et al. (2023) proposed a 

simplification algorithm based on Principal Component Analysis (PCA), dividing the point 

cloud into feature and non-feature point clouds to obtain the final simplification result. 

Points located at sharp edges are also considered important; Huang et al. (2010) addressed 

the issue of boundary point loss by proposing a method to preserve boundary points. Gong 

et al. (2021) quantified the clustering of points within a neighborhood by calculating the 

summation of normal vectors of a point and its neighboring points; if the summation 

approaches zero, the point is considered a non-edge point. Wang et al. (2022) used region-

growing segmentation to simplify point cloud partitions, while Gao et al. (2021) divided the 

point cloud into feature and non-feature points, simplifying non-feature points using the 

regional gravity center method. 

d. Research gap 

However, retaining only important points while discarding less important ones or regions 

can lead to the loss of geometric features in the point cloud. Therefore, completeness still 

requires further research. In summary, the methods discussed provide solutions for point 

cloud simplification but also have limitations. Mesh-based simplification involves high 

computational costs, whereas point-based importance methods preserve local information 

but require multiple iterations of removing unimportant points until the target number is 

reached. This approach increases the computational load and may lead to uneven point 

selection, which can result in gaps or excessive simplification.  

Although there are many existing simplification algorithms, the simplification parameters 

for unordered point clouds often rely on empirical rules, making it difficult to adaptively 

adjust based on local features. This leads to the insufficient preservation of important 
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information in regions with significant feature differences. Among current adaptive 

neighborhood adjustment methods, Demantké et al. (2017) proposed an entropy-based 

neighborhood selection method based on multi-scale analysis, while He et al. (2017) 

introduced a curvature-based adaptive neighborhood determination method. However, the 

former only uses radius search, which may fail to find points in sparse regions, and the latter 

adapts based on point cloud density without a fixed criterion. Therefore, combining both 

methods allows for adaptive neighborhood selection, and the importance threshold can be 

adjusted dynamically for each neighborhood. This study aims to implement an adaptive 

feature preservation strategy by dynamically adjusting the neighborhood size of each point, 

retaining geometric features while reducing computational costs. 

Methodology  

This study presents an improved method based on existing approaches for simplifying edge 

points, feature points, and non-feature points. The improvement lies in adapting the 

neighborhood size to the point cloud characteristics, rather than keeping it fixed, and using 

a partitioning strategy to enhance simplification efficiency. Unlike traditional methods, this 

study calculates point importance only within feature regions. It sets dynamic thresholds 

based on varying neighborhood sizes to preserve feature points and avoids calculations 

across the entire point cloud. 

First, PCA is used to obtain curvature and entropy to establish adaptive neighborhoods, 

dividing the point cloud into scattered and regular regions, with different methods used to 

determine neighborhood size. Next, a partitioning strategy simplifies the point cloud by 

identifying edge points through normal vector distribution and segmenting the cloud into 

feature and non-feature regions using a region-growing method(Wang et al. ,2022). 

Within each feature region, the method evaluates every point by calculating the normal 

vector difference, projection distance, spatial distance, and curvature difference relative to 

its neighborhood (Ji et al., 2019). The weighted sum of these factors determines point 

importance. If the importance exceeds a certain threshold, the point is retained; otherwise, 

it is merged with non-feature regions as a non-feature point. Non-feature points are 

simplified by their regional centroids. Finally, edge points, feature points, and the simplified 

non-feature points are combined to complete the point cloud simplification, as shown in 

Figure 2. 
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Flowchart of the Study. 
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a. Calculation of 3D Feature Factors:  

PCA calculates the eigenvalues𝜆1、𝜆2、𝜆3 , which are then normalized as shown in 

Equation (1), resulting in Table 1. Scattering, Planarity, and Linearity are used to classify 

corner, planar , and linear features. Curvature indicates the degree of flatness and represents 

the sharpness of the sample point. Higher eigenentropy signifies rapid changes and 

highlights the importance of the feature. 

𝑒𝑖 =
𝜆𝑖

𝜆1 + 𝜆2 + 𝜆3

(1) 

 Classification of Feature Factors. (Weinmann et al., 2015) 

Feature Calculation Formula 3D Variables 

𝑆𝜆 =
𝑒3

𝑒1
 Scattering 

𝑃𝜆 =
(𝑒2 − 𝑒3)

𝑒1
 Planarity 

𝐿𝜆 =
(𝑒1 − 𝑒2)

𝑒1
 Linearity 

𝐸𝜆 = −∑𝑒𝑖 𝑙𝑛(𝑒𝑖)

3

𝑖=1

 Eigenentropy 

𝐶𝜆 =
𝑒3

𝑒1 + 𝑒2 + 𝑒3
 Curvature 

Curvature estimates the degree to which neighboring points deviate from the tangent plane. 

A ratio of 0 indicates that the neighboring points lie entirely on the plane. Pauly et al. (2002) 

noted that surface variations are considered curvature, but the value depends on the 

neighborhood size. Figure 3 shows the impact of different neighborhood sizes on the 

curvature estimation of a chair dataset, highlighting the importance of selecting an 

appropriate neighborhood size for accurate curvature estimation. 

 

Source: (Benhabiles et al., 2013) 

From Left to Right: Curvature Estimated With Neighborhood Sizes of 20, 50, 

and 100.  

b. Adaptive Optimal Neighborhood Size 
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Due to the significant variation in point cloud structure and density, a fixed neighborhood 

size is insufficient, and dynamic adjustment of the number of neighbors for each point is 

required (Weinmann et al., 2015). He et al. (2017) proposed a curvature-based adaptive 

neighborhood method that divides the point cloud into scattered and regular regions, 

applying k-nearest neighbors and r-nearest neighbors, respectively. In low-density or 

irregularly distributed areas, k-nearest neighbors ensure sufficient neighbors are found, 

while in high-density areas, r-nearest neighbors are more efficient, avoiding the linear 

behavior issues of the k-nearest method. 

First, the curvature of each point is calculated, with the neighborhood size initially set to 

k=10. Then, the k-means algorithm is applied to divide the point cloud into two clusters, 

with the initial cluster centers being the minimum and maximum curvature values in the 

point cloud. Assuming the centers of the two clusters are 𝑐𝑢𝑟1 and 𝑐𝑢𝑟2 (𝑐𝑢𝑟2 > 𝑐𝑢𝑟1) , the 

curvature threshold 𝑐𝑡 can be expressed as shown in Equation (2). 

𝑐𝑡 = 𝑐𝑢𝑟1 + (𝑐𝑢𝑟2 − 𝑐𝑢𝑟1) ×
𝑛𝑢𝑚𝐶𝑙𝑢𝑠𝑡𝑒𝑟2
𝑛𝑢𝑚𝑃𝑜𝑖𝑛𝑡𝑠

(2) 

Here, 𝑐𝑢𝑟1 and 𝑐𝑢𝑟2 represent the curvature values of the two cluster centers, 𝑛𝑢𝑚𝐶𝑙𝑢𝑠𝑡𝑒𝑟2 

is the number of points in the higher curvature cluster, and 𝑛𝑢𝑚𝑃𝑜𝑖𝑛𝑡𝑠 is the total number 

of points. 

For scattered regions, the k-nearest neighborhood (𝑣𝑘) is used, while the r-nearest neighbors 

neighborhood (𝑣𝑟) is applied for regular regions. After setting the ranges for 𝑣𝑘 and 𝑣𝑟, 

Shannon entropy is used to determine the optimal neighborhood. Based on the multi-scale 

analysis method of Demantké et al. (2017), the entropy within a radius is calculated, and 

the radius with the lowest entropy is chosen as the optimal neighborhood. In the range 

[𝑟𝑚𝑖𝑛, 𝑟𝑚𝑎𝑥] , 𝐿𝜆 、𝑃𝜆  and 𝑆𝜆  are calculated for each point, and Shannon entropy is 

compared to determine the optimal radius for the point, as shown in Equation (3). 

𝐸𝑓(𝑉𝑟
𝑃) = −𝐿𝜆 ln(𝐿𝜆) −𝑃𝜆 𝑙𝑛(𝑃𝜆) − 𝑆𝜆 𝑙𝑛(𝑆𝜆) (3) 

Equation (4) calculates the entropy𝐸𝑓 of a point P within a neighborhood of radius r. The 

optimal radius 𝑟∗
𝐸𝑓

 is the radius that minimizes 𝐸𝑓(𝑉𝑟
𝑃), as shown in Equation (4): 

𝑟∗
𝐸𝑓

= arg min
𝑟∈[𝑟𝑚𝑖𝑛,𝑟𝑚𝑎𝑥]

𝐸𝑓(𝑉𝑟
𝑃) (4) 

Similarly, this study suggests that Shannon entropy can be used to select the optimal k value. 

By applying the method separately to scattered and regular regions, the k value and radius 

with the lowest entropy are chosen and then combined to form the adaptive neighborhood 

(𝑣𝑐). 
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c. Edge Points 

Based on preliminary experiments, this study chose to use the method proposed by Gong et 

al. (2021) , non-edge points have a uniformly distributed neighborhood, while edge points 

have their neighborhood points clustered in a specific direction. The edge coefficient F p 

measures the degree of distribution clustering within the neighborhood of point p by 

summing the normal vectors of the point and its neighbors. If the resultant vector is close 

to zero, the point is classified as a non-edge point (see Figure 4(a)); if the resultant vector 

significantly deviates from zero, the point is classified as an edge point (see Figure 4(b)). 

 

Source: (Gao et al., 2021) 

Distribution of Edge and Non-Edge Points 

𝐹𝑃 =
1

𝐷
|∑

𝑝𝑝𝑖⃗⃗⃗⃗⃗⃗ 

|𝑝𝑝𝑖⃗⃗⃗⃗⃗⃗ |

𝐷

𝑖=1

| (5) 

Where： 

𝐹𝑃 is the edge coefficient, measuring the clustering degree of points around 𝑝. 

D is the number of neighboring points. 

𝑝𝑝𝑖⃗⃗⃗⃗⃗⃗  is the vector from point 𝑝 to its neighbor 𝑝𝑖. 

Equation (5) calculates the average magnitude of the unit vectors from point p to each 

neighboring point. A larger 𝐹𝑃 value indicates uneven distribution of neighbors, suggesting 

that point p may be an edge point. 

d. Region growing segmentation 

Even with the region-growing segmentation method by Wang et al. (2022), the point cloud 

can be adaptively divided into feature and non-feature regions based on curvature, 

improving accuracy with a smaller computation range. If the average regional curvature is 

greater than or equal to the global average, it is classified as a feature region, retaining 

feature points 𝑃𝑓 with importance exceeding a threshold; otherwise, it is classified as a non-

feature region. Here, 𝐶𝑡ℎ and 𝐶𝑡ℎ are two parameters determining regional adaptiveness in 

the region-growing segmentation: 𝐶𝑡ℎ is the curvature threshold, which decides the number 

of seed points, while 𝜃𝑡ℎ  is the angle threshold, which determines the number of points 
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within the region. These parameters together determine the region size. When 𝐶𝑡ℎ and 𝜃𝑡ℎ 

are set too low, the region segmentation becomes overly detailed, resulting in more points 

being defined as feature points, which increases computational load. Conversely, when 𝐶𝑡ℎ 

and  𝜃𝑡ℎ  are set too high, the region segmentation becomes too coarse, leading to the 

omission of many feature points. The settings of these parameters will be analyzed in 

subsequent experiments. 

e. Calculation of Point Cloud Importance 

Linsen (2001) defined point importance as the sum of neighborhood distance, non-planarity, 

and normal vector variation. Alexa et al. (2001) used surface projection distance as a 

measure, while Chen et al. (2023) introduced parameters such as curvature, normal vector 

angle, and distance. Song et al. (2009) argued that points cannot substitute each other when 

the neighborhood distance is too large. Therefore, this study adopts normal vector 

difference, projection distance, spatial distance, and curvature difference to describe point 

importance (Ji et al., 2019). 

∑[𝛼 × (1 − 𝑛𝑝
𝑇𝑛𝑗) + 𝛽 × |𝑛𝑝

𝑇(𝑝 − 𝑝𝑗)| + 𝛾 × ‖𝑝 − 𝑝𝑗‖ + 𝛿 × |𝑐𝑢𝑝 − 𝑐𝑗|]

𝑘

𝑗=1

(6) 

Where 𝛼, 𝛽, 𝛾, 𝛿 ( 𝛼 > 0, 𝛽 > 0, 𝛾 > 0, 𝛿 > 0  and 𝛼 + 𝛽 + 𝛾 + 𝛿 = 1 ) are weighting 

factors. 𝑝 is the sample point , 𝑝𝑗(1 ≤ 𝑗 ≤ 𝑘) are the neighbors of 𝑝. 𝑛𝑝 is the normal 

vector of 𝑝, 𝑛𝑗(1 ≤ 𝑗 ≤ 𝑘) are the normal vectors of the neighboring points 𝑝𝑗, 𝑐𝑢𝑝 is the 

curvature of 𝑝, and 𝑐𝑗(1 ≤ 𝑗 ≤ 𝑘) are the curvatures of  𝑝𝑗. 

(1 − 𝑛𝑝
𝑇𝑛𝑗): A larger normal vector difference indicates the surface around the point is more 

convex. 

|𝑛𝑝
𝑇(𝑝 − 𝑝𝑗)|: The projection distance reflects the point's concavity or convexity. 

‖𝑝 − 𝑝𝑗‖: Euclidean distance, with larger values suggesting the point is in a sharp or sparse 

region, and should be retained to maintain completeness. 

|𝑐𝑢𝑝 − 𝑐𝑗|: Curvature difference, which indicates whether the point is in a sharp region. 

f. Threshold Determination for Feature Point Selection 

When the importance of a point is greater than or equal to the threshold, the point is retained 

as a feature point. According to the definition by Yang et al. (2023), it is set as: 

𝜀 × ∑ [(1 − 𝑛𝑝
𝑇𝑛𝑗) + |𝑛𝑝

𝑇(𝑝 − 𝑝𝑗)| + ‖𝑝 − 𝑝𝑗‖ + |𝑐𝑢𝑝 − 𝑐𝑗|]
𝑁
𝑗=1

𝑇
(7) 

Where ε represents the control coefficient for the number of feature points, and T denotes the 
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number of neighboring points in the point cloud. 

g. Non-Feature Point Simplification 

After extracting feature points, flat areas may develop holes, so non-feature points need to be 

simplified. This study employs the region centroid-based simplification method (Gao et al., 

2021), which divides non-feature points into small cubes, calculates the distance between the 

centroid and the internal points, and finally merges the edge points, feature points, and non-

feature points to complete point cloud simplification. 

𝑙𝑥 = 𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛；𝑙𝑦 = 𝑦𝑚𝑎𝑥 − 𝑦𝑚𝑖𝑛；𝑙𝑧 = 𝑧𝑚𝑎𝑥 − 𝑧𝑚𝑖𝑛 (8) 

𝑑𝑥 =
𝑙𝑥
𝑢
；𝑑𝑦 =

𝑙𝑦

𝑢
；𝑑𝑧 =

𝑙𝑧
𝑢

(9) 

Based on the coordinates of the point cloud data, calculate the maximum and minimum values 

for the X, Y, and Z axes (𝑥𝑚𝑎𝑥, 𝑦𝑚𝑎𝑥, 𝑧𝑚𝑎𝑥, 𝑥𝑚𝑖𝑛, 𝑦𝑚𝑖𝑛, 𝑧𝑚𝑖𝑛).Use formula (8) to calculate the 

edge lengths of the cubes(𝑙𝑥, 𝑙𝑦, 𝑙𝑧). Set the edge length of each cube to 𝑢 and use formula (9) 

to calculate the size of the small cubes. The choice of 𝑢 depends on the object's size. If 𝑢 is too 

large, details may be lost; if 𝑢 is too small, the simplification effect may be inadequate (Wang 

et al., 2022). In this study, 𝑢 is used to control the simplification rate. 

Assuming a cube contains N points 𝑝1、𝑝2、𝑝3 … . 𝑝𝑁, with coordinates (𝑝𝑥𝑖 , 𝑝𝑦𝑖, 𝑝𝑧𝑖) for 𝑖 =

1,2, …𝑁, the average point p is defined as: 

𝑝𝑥 =
∑ 𝑝𝑥𝑖

𝑁
𝑖=1

𝑁
 𝑝𝑦 =

∑ 𝑝𝑦𝑖
𝑁
𝑖=1

𝑁
 𝑝𝑧 =

∑ 𝑝𝑧𝑖
𝑁
𝑖=1

𝑁
(10) 

Then, calculate the distance 𝑑𝑖 between each point 𝑝𝑖(𝑝𝑥𝑖, 𝑝𝑦𝑖, 𝑝𝑧𝑖) in the small cube and the 

average point p. The distance 𝑑𝑖 is given by: 

𝑑𝑖 = √(𝑝𝑥𝑖 − 𝑝𝑥)2 + (𝑝𝑦𝑖 − 𝑝𝑦)
2
+ (𝑝𝑧𝑖 − 𝑝𝑧)2 (11) 

Retain the point closest to the centroid within the small cube, while deleting the other points. 

The simplification process is illustrated in Figure 6. 

 

Source: (Gao et al., 2021) 

Illustration of Region Centroid-Based Simplification (Gao et al., 2021). 
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h. Quantitative Standards for Point Cloud Simplification  

According to Cignoni et al. (1998), the error of simplified point clouds can be measured using 

maximum geometric error, average geometric error, and RMSE. Let 𝑆 represent the original 

point cloud surface, and 𝑆' represent the simplified surface. The geometric error 𝑑(𝑝,𝑆') is 

defined as the Euclidean distance between a point 𝑝 and its projection on 𝑆'. The maximum and 

average geometric errors, as well as RMSE, are defined as follows: 

∆𝑚𝑎𝑥(𝑆, 𝑆
′) = 𝑚𝑎𝑥⏟

𝑞∈𝑆

|𝑑(𝑝, 𝑆′)| (12)
 

∆𝑎𝑣𝑒(𝑆, 𝑆
′) =

1

‖𝑆‖
∑ 𝑑(𝑝, 𝑆′)

𝑞∈𝑆
(13) 

σ = √
1

𝑛
∑ (𝑋𝑖)2

𝑛

𝑖=1
(14) 

𝑋𝑖 is the i-th error value and n is the total number of error values. 

The formulas for the simplification rate and the change ratio of volume are given as follows: 

𝑆𝑖𝑚𝑝𝑙𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑅𝑎𝑡𝑒 =
𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑃𝑜𝑖𝑛𝑡𝑠 − 𝑆𝑖𝑚𝑝𝑙𝑖𝑓𝑖𝑒𝑑 𝑃𝑜𝑖𝑛𝑡𝑠

𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑃𝑜𝑖𝑛𝑡𝑠
× 100% (15) 

𝑪𝒉𝒂𝒏𝒈𝒆 𝑹𝒂𝒕𝒊𝒐  𝒐𝒇 𝑽𝒐𝒍𝒖𝒎𝒆 =
𝑽𝒐𝒍𝒖𝒎𝒆 𝒃𝒆𝒇𝒐𝒓𝒆 − 𝑽𝒐𝒍𝒖𝒎𝒆 𝒂𝒇𝒕𝒆𝒓

𝑽𝒐𝒍𝒖𝒎𝒆 𝒃𝒆𝒇𝒐𝒓𝒆
× 𝟏𝟎𝟎% (𝟏𝟔) 

Results and Discussion 

This study aims to achieve effective feature preservation within an adaptive neighborhood 

range while reducing the number of points in the point cloud. To validate the proposed method, 

simulation experiments were conducted using datasets to assess its performance. Additionally, 

actual point cloud data were used to evaluate the method's effectiveness in real-world scenarios. 

a. Simulation experiment 

To validate the accuracy of the proposed method, the Bunny point cloud dataset from the 

Stanford 3D Point Cloud Database was used to test its feasibility. The original point cloud 

consists of 35,947 points, as shown in Figure 6. All experiments were conducted on a system 

running Windows 11 Pro (version 23H2), equipped with an Intel(R) Core(TM) i7-12700F 

processor (2.10 GHz) and 32 GB of memory. The code was developed in the MATLAB 2024a 

environment. 



                              Asian Conference on Remote Sensing (ACRS 2024)  

Page 12 of 27 
 

 

Stanford bunny Original Point Cloud. 

b. Scatter Region and Regular Region 

The point cloud data is divided into scatter regions (curvature greater than or equal to 𝑐𝑡 and 

regular regions (curvature less than 𝑐𝑡). In Figure 7, which shows the Stanford Bunny dataset, 

the scatter regions, marked in red, are predominantly located where curvature changes are more 

pronounced. These areas, such as the ears, neck, and legs, exhibit dense and highly variable 

point distributions. Conversely, the regular regions, marked in blue, are mostly found on the 

body, with a relatively flat and uniform point distribution. This indicates that curvature provides 

a consistent criterion for evaluating the geometric properties of points in the point cloud, 

serving as the basis for adaptive neighborhood selection. 

 

Scatter Region and Regular Region on Bunny. 

c. Setting Parameters for the Experiments—𝒗𝒌 and 𝒗𝒓 

The parameters to be set in this study include 𝑣𝑘  and𝑣𝑟 , the parameters 𝐶𝑡ℎ  and 𝜃𝑡ℎ  for the 

region growing segmentation, the four importance parameters 𝛼, 𝛽, 𝛾, 𝛿, and the feature point 

threshold ε . The range for the adaptive neighborhood 𝑣𝑘  varies between 𝑘𝑚𝑖𝑛 = 10  and 

𝑘𝑚𝑖𝑛 = 30 , with an interval of 1. The neighborhood 𝑣𝑟 , based on point cloud density and 

average spacing, is chosen to be within the range [0.001, 0.004] after several trials, with a 

spacing of 16 according to Demantké et al. (2017). After assigning points to scatter or regular 

regions, the Shannon entropy is used to select the k value or radius with the smallest entropy 

as the optimal neighborhood. 

d. Edge Point Extraction 
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Figure 9(a) displays the edge point extraction results from this study. Compared to Figure 8 (b) 

from Benhabiles et al. (2013) and Figure 9(c) from Song & Feng (2009), all methods detect 

sharp regions such as the ear boundaries and tail contours. 

 

Source: (Benhabiles et al., 2013); (Song & Feng, 2009) 

Edge Point. (a) Edge point extraction results using the method from this study. 

(b) Results from Benhabiles et al. (2013). (c) Results from Song & Feng (2009). 

e. Setting Parameters for the Experiments—𝑪𝒕𝒉、𝜽𝒕𝒉、𝜶,𝜷, 𝜸, 𝜹、𝛆 

𝐶𝑡ℎ  and 𝜃𝑡ℎ  are two key parameters in the region-growing segmentation process. 𝐶𝑡ℎ 

represents the curvature threshold, while 𝜃𝑡ℎ  is the angle threshold. Setting 𝐶𝑡ℎ  and 𝜃𝑡ℎ  too 

small results in overly detailed segmentation, increasing computational load, while setting them 

too large leads to coarse segmentation, potentially missing feature points. This study 

experimentally verifies the effects of setting𝐶𝑡ℎ and 𝜃𝑡ℎ, as shown in Figure 9. 

   
(a) (b) (c) 
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(d) (e) (f) 

The feature points of different𝐶𝑡ℎ and 𝜃𝑡ℎ on Bunny simplified dataset. (a)𝐶𝑡ℎ =

0.001 , 𝜃𝑡ℎ = 5; (b) 𝐶𝑡ℎ = 0.001 , 𝜃𝑡ℎ = 30; (c) 𝐶𝑡ℎ = 0.01 , 𝜃𝑡ℎ = 5; (d) 𝐶𝑡ℎ =

0.01 , 𝜃𝑡ℎ = 30; (e) 𝐶𝑡ℎ = 0.1 , 𝜃𝑡ℎ = 5; (f). 𝐶𝑡ℎ = 0.1 , 𝜃𝑡ℎ = 30. 

Additionally, the number of retained feature points is analyzed, as shown in Table 2. 

 The different results of different 𝐶𝑡ℎ and 𝜃𝑡ℎ. 

Parameters Feature Points 

𝐶𝑡ℎ = 0.001 , 𝜃𝑡ℎ = 5 0 

𝐶𝑡ℎ = 0.001 , 𝜃𝑡ℎ = 30 0 

𝐶𝑡ℎ = 0.01 , 𝜃𝑡ℎ = 5 5207 

𝐶𝑡ℎ = 0.01 , 𝜃𝑡ℎ = 30 5199 

𝐶𝑡ℎ = 0.1 , 𝜃𝑡ℎ = 5 6849 

𝐶𝑡ℎ = 0.1 , 𝜃𝑡ℎ = 30 6841 

The experimental results indicate that when the curvature threshold 𝐶𝑡ℎ is set too low (e.g., 

𝐶𝑡ℎ = 0.001 ), no feature points are detected, regardless of the angle threshold 𝜃𝑡ℎ . As 𝐶𝑡ℎ 

increases, the number of feature points grows. While a larger 𝜃𝑡ℎ slightly reduces the number 

of feature points, its impact is less significant than that of the curvature threshold. Therefore, 

setting 𝐶𝑡ℎ = 0.1 and 𝜃𝑡ℎ = 5  effectively preserves key features such as the neck, feet, and 

ears. To evaluate the influence of the weight parameters for feature factors, the initial setting is 

𝜀 = 1. The analysis of each parameter set to 1 is detailed below. 

    
(a) (b) (c) (d) 

Analysis of Importance Weighting Factors. (a) 𝛼 = 1 𝛽 = 0 𝛾 = 0 𝛿 = 0 ; (b) 

𝛼 = 0 𝛽 = 1 𝛾 = 0 𝛿 = 0 ; (c) 𝛼 = 0 𝛽 = 0 𝛾 = 1 𝛿 = 0 ; (d) 𝛼 = 0 𝛽 = 0 𝛾 = 0 𝛿 = 1. 
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As shown in Figure 10, the normal vector difference concentrates feature points in areas with 

significant geometric changes, indicating its ability to effectively capture edges. The projection 

distance did not retain feature points and performed poorly, suggesting that an extremely small 

ε value might be required for feature points to appear. Although spatial distance retained fewer 

feature points, it was still able to identify points in edge regions of the dataset. Curvature 

difference preserved a large number of feature points, especially in areas with geometric 

changes (e.g., ears, feet, nose), demonstrating strong performance in capturing details. 

Therefore, curvature and normal vector difference should be prioritized, with spatial distance 

as a complement. The final weights were set to 𝛼 = 0.4 𝛽 = 0.1 𝛾 = 0.2 𝛿 = 0.3, and the ε 

value was determined accordingly. 

   
(a) (b) (c) 

Comparison of the Feature Point Control Coefficient 𝜀. (a) 

𝜀 = 1 (b) 𝜀 = 2 (c) 𝜀 = 3. 

 Volume Variation Due to Changes in ε Value. 

The Value 

of ε 

Original Feature Region 

Volume 

Feature Region Volume 

After Removing 

Unimportant Points 

Change Ratio of 

Volume(%) 

1 0.0012065 0.0012043 0.18 

2 0.0012065 0.0012 0.54 

3 0.0012065 0.0011927 1.14 

Based on Figure 11 and Tables 3, when 𝜀 = 1, most feature points are preserved, with minimal 

change in the volume of feature regions. At 𝜀 = 2, the number of feature points decreases, and 

the volume slightly reduces, achieving a balance between feature point preservation and 

simplification. At 𝜀 = 3, the volume significantly decreases, retaining only the most prominent 

feature points while removing more details.  
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Next, we analyze the effect of different ε values on feature preservation. As previously 

mentioned, 𝑢 controls the simplification rate. To determine the impact of 𝜀, 𝑢 is set uniformly 

to 0.005. Figures 12 (a), (b), and (c) show edge points, feature points, and non-feature points 

for 𝜀 = 1, with a simplification rate of 67.92%. Figures 12 (d), (e), and (f) correspond to 𝜀 =

2, with a simplification rate of 72.15%. Figures 12 (g), (h), and (i) display the results for 𝜀 = 3, 

with a simplification rate of 74.60%. Figure 13 (a) shows the final point cloud simplification 

results from different perspectives for 𝜀 = 1. Figure 13 (b) corresponds to 𝜀 = 2, and Figure 

13 (c) corresponds to 𝜀 = 3. 

At 𝜀 = 1, features such as the ear edges, depressions, and thigh undulations are well-preserved. 

However, too many points are retained, including those in non-feature areas and even in 

smoother regions like the thigh undulations and around the tail. This results in weaker 

simplification. Thus, this ε value may not achieve effective point cloud simplification. 

Although feature preservation is good, the simplification is insufficient, and feature and non-

feature points are not effectively distinguished. 

At 𝜀 = 2, the details of the ear edges are better preserved. Depressions such as the rabbit's neck, 

feet, and thigh transitions maintain a relatively complete shape, and the details around the tail 

are also moderately preserved without excessive simplification. This indicates that 𝜀 = 2 

provides a good balance between preserving important geometric features and achieving 

effective point cloud simplification. 

At 𝜀 = 3, too many points are removed, resulting in the loss of important geometric features. 

The ear edges begin to blur, and details in depressions such as the neck transitions, feet, and 

tail are also lost. Although the thigh undulations are still present, the details are not as clear as 

with 𝜀 = 2. 

   
(a) (b) (c) 
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(d) (e) (f) 

   
(g) (h) (i) 

Simplified Point Cloud with Edge, Feature, and Non-Feature Points. 

   
(a) 

   

(b) 
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(c) 

(a) Final Result for 𝜀 = 1, (b) Final Result for 𝜀 = 2, (c) Final Result for 𝜀 = 3. 

 Error Comparison of Different ε Values in Simplified Point Cloud. 

The 

Value 

of ε 

Number of 

Points 

Simplificatio

n Rate (%) 

Maximum 

Geometric 

Error 

Average 

Geometric 

Error 

RMSE 

Change 

Ratio of 

Volume(%) 

1 11531 67.92 0.003847 0.001105 0.001418 0.18 

2 10013 72.15 0.003847 0.001192 0.001483 0.54 

3 9131 74.60 0.003847 0.001245 0.001523 1.14 

Table 4 shows that as the ε value increases, the number of points in the point cloud decreases, 

while the maximum geometric error remains stable. However, the average geometric error and 

RMSE slightly increase, indicating a decrease in accuracy. Thus, a larger ε value results in 

better simplification but more detail loss, while a smaller ε value preserves more details but 

has limited effect on reducing error. Therefore, considering the balance between simplification 

accuracy and feature preservation, 𝜀 = 2  is the most suitable. 

In Figure 13(b), the selection of parameters such as normal vector difference, projection 

distance, Euclidean distance, and curvature difference proves to be crucial for feature 

preservation. Normal vector difference effectively captures the geometric details of the rabbit's 

ears and feet. Projection distance helps maintain the undulations and transitions of the thighs 

and ears. Euclidean distance effectively preserves the contours at edge points like the tips of 

the ears and tail, while curvature difference protects sharp transitions. These four parameters 

work together, and with an appropriate ε setting, they achieve both feature detail preservation 

and point cloud simplification. 

f. Comparison of Simplification Effects with Other Methods 

This study compares the simplification effects on the Bunny dataset of several recently 

developed point cloud simplification methods: Delaunay neighborhood-based method (Gong 

et al., 2021), Partition-based method (Wang et al., 2022), Grid-based method (Zhou et al., 2021), 
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and Boundary-Preserving method (Chen et al., 2023), aiming for similar simplification rates. 

The original point cloud, shown in Figure 14 comes from Ji et al. (2019) using Geomagic Studio. 

The point cloud simplification results are analyzed against this standard, as detailed in Tables 

5 and 6. 

The Delaunay neighborhood-based method (Gong et al., 2021) maintains the overall shape well 

but suffers from significant loss of detailed features. Details such as the edges of the rabbit’s 

ears, the subtle depressions on the thighs, and the tail’s details are not effectively preserved, 

showing poor feature representation. In contrast, this study, at a comparable simplification rate, 

not only maintains the overall shape effectively but also preserves details such as the ears, 

thighs, and tail more comprehensively. Although the maximum error is higher than in this study, 

the average error and RMSE are lower. 

The Grid-based method (Zhou et al., 2021) produces somewhat blurred point cloud results, 

especially with almost indiscernible contours of the ears and details of the feet. This study 

preserves better features at a similar simplification rate, with clear contours of the ears and 

more pronounced undulations of the tail and thighs, demonstrating superior feature 

preservation. This method lacks values for maximum and average errors, but its RMSE is 

significantly higher than that of this study. 

Compared to the Partition-based method (Wang et al., 2022), this study shows higher errors, 

indicating room for improvement in global error control. However, in terms of feature 

preservation, this study is superior in maintaining edge details of the ears and feet, particularly 

the depressions inside the ears. For the neck and thighs, this study better preserves undulations 

and features, making the overall shape retention of the rabbit more precise. 

The Boundary-Preserving method (Chen et al., 2023) demonstrates strong feature preservation 

capabilities at an 80% simplification rate, especially in preserving details such as the edges of 

the rabbit’s ears and the tail. In comparison, this study at the same simplification rate retains 

fewer non-feature points, resulting in less representation of the rabbit’s back. Consequently, 

this study has higher maximum and average errors compared to this method (which lacks 

RMSE values for comparison). Nonetheless, this study maintains detailed features in the ear 

depressions and accurately preserves the shapes of the thighs and feet. 
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Source: (Ji et al., 2019) 

Stanford Bunny dataset. 

 Comparison of Features with Other Methods. 

Simplification 

Rate (%) : 

Other 

Method/The 

Proposed 

Method 

 
Delaunay neighborhood-

based(Gong et al., 2021) 
The Proposed 

53.00/53.02 

  
 Grid-based (Zhou et al., 2021) The Proposed 

66.5/66.84 

  

 Partition-based (Wang et al., 2022) The Proposed 
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75/75.04 

  

 
Boundary-Preserving(Chen et al., 

2023) 
The Proposed 

80/80 

  

 Error Comparison with Other Methods. 

Method 
Simplification 

Rate (%) 

Maximum 

Error 

Average 

Error 
RMSE 

Change Ratio 

of Volume for 

the Proposed 

Method(%) 

Delaunay 

neighborhood-

based(Gong et 

al., 2021)/The 

Proposed 

53.00/53.02 
0.021136 

/0.002358 

0.000204 

/0.000622 

0.000596 

/0.000877 
0.07 

Grid-based 

Reduction(Zh

ou et al., 2021) 

/The Proposed 

66.5/66.84   0.0256 

/0.001203 
0.15 

Method(Wang 

et al., 2022) 

/The Proposed 

75/75.04 
0.002868 

/0.004855 

0.000066 

/0.001426 

0.000136 

/0.001769 
0.27 

Four-Feature 

Boundary-

Preserving(Ch

en et al., 2023) 

80/80 
0.0042 

/0.018812 

0.0011 

/0.003181 
 1.16 

g. Real Point Cloud Test 

To further validate the robustness of the method, a 49,393-point sculpture point cloud (Yang 

& Jaw, 2023) from the Department of Civil Engineering, National Taiwan University, was 

selected for testing. This sculpture features an arched structure and geometric markings with 
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rich details. Table 9 shows the extracted edge points and the regions classified into feature 

and non-feature areas through region growing segmentation in the real point cloud. The 

range for 𝑣𝑘  is set between [10, 30], 𝑣𝑟 is chosen based on the point cloud density and 

average spacing, between [0.001m, 0.004m], and  ε is set to 2, with other parameters 

remaining unchanged. Results and errors for different simplification rates are compared. As 

shown in Figure 15, Figure 16 and Tables 7. 

 
(a) 

    
(b) (c) (d) (e) 

Results with a simplification rate of 78.55% under the real point cloud. (a) 

original point cloud (b) edge points (green) (c) feature points (red) (d) non-feature points 

(blue) (e) all points (black) 

 

 

 

(a) 44.04% 
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(b) 58.63% 

 

 

 

(c)  78.55% 

 

 

 

(d) 81.71% 

Results of Different Simplification Rates from Various Perspectives for the 

Real Point Cloud. (a) 44.04% (b) 58.63% (c) 78.55% (d) 81.71% 

 Error Comparison for Real Point Clouds at Different Simplification Rates. 

Simplification 

Rate (%) 

Maximum 

Error(m) 

Average Error 

(m) 
RMSE(m) 

Change Ratio of 

Volume(%) 
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44.04 0.001399 0.000356 0.00055 0.05 

58.63 0.001693 0.000522 0.000701 0.08 

78.55 0.003785 0.001135 0.00139 0.22 

81.71 0.006453 0.001687 0.002135 0.27 

As shown in Figure 15(c), at a simplification rate of 78.55%, the point cloud still exhibits 

the uneven features at the bottom, with these details being well-preserved. However, smaller 

details in the upper-left corner and the central arc-shaped depressions are not fully retained, 

indicating feature loss in these areas during simplification. This may be because these 

regions have smoother or less prominent features compared to the more pronounced 

undulations, leading them to be deemed less important and removed during the 

simplification process. In other words, the feature selection and preservation mechanism 

performs better with large-scale features but is somewhat inadequate for small-scale or 

complex geometric details. 

From Figure 16 and Tables 7, it is evident that at a 44.04% simplification rate, the geometric 

error is relatively small, and the point cloud details are well-preserved, showing high 

similarity to the original point cloud. As the simplification rate increases, geometric error 

rises significantly, and the point cloud becomes progressively sparser. At simplification 

rates of 78.55% and 81.71%, details are significantly reduced, especially at 81.71%, where 

the geometric shape becomes coarse, which aligns with the high geometric errors in the data. 

Conclusion and Recommendation  

This study demonstrates that by dynamically adjusting the neighborhood size to more 

accurately reflect local geometric features, the proposed method outperforms traditional 

fixed-neighborhood approaches. The method adjusts the neighborhood size based on 

regional characteristics, effectively capturing details in the point cloud and avoiding issues 

of information loss and feature confusion caused by either too small or too large 

neighborhoods. Additionally, the study uses a partitioning strategy to divide the point cloud 

into feature and non-feature regions, balancing feature preservation and simplification rate 

effectively. 

In feature regions, point importance is calculated using a combination of normal vector 

differences, projection distances, spatial distances, and curvature differences, with varying 

retention thresholds set to ensure the preservation of geometrically significant points. For 
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non-feature regions, a regional centroid-based simplification method is employed, reducing 

the number of points by mapping them to centroid points while preserving overall shape and 

edge features. The final simplification integrates edge points, feature points, and non-feature 

points, and measures errors using maximum geometric error, average geometric error, and 

root mean square error. 

The experimental results indicate that the point cloud simplification method proposed in this 

study shows improved performance in preserving important feature details, such as those of 

the ears, thighs, and tail, compared to traditional methods, though there are still some areas 

where it could be further enhanced. However, there are limitations when it comes to 

smoother or less prominent geometric details in real point clouds. Future improvements 

should focus on enhancing the ability to identify and preserve such fine features to better 

control errors. 
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