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Abstract Weed management is a crucial factor in agricultural production, traditionally reliant on 

labor-intensive and chemical-heavy methods. The advent of unmanned Aerial Vehicles offers a 

transformative approach to this challenge, providing precise weed mapping and targeted herbicide 

spraying. This review paper explores the comprehensive role of unmanned aerial vehicles in weed 

management, detailing the types of drones used, such as multi-rotor, fixed-wing, and hybrid drones, 

and the sensors and cameras they employ for high-accuracy weed detection and mapping. We delve 

into the major unmanned aerial vehicles models used for both weed mapping and herbicide dispersion 

and compare the efficiency and environmental impact of unmanned aerial vehicle technology with 

conventional methods. Various herbicides dispersed via unmanned aerial vehicles are discussed, along 

with their classification based on climate and edaphic factors. The efficiency and persistence of 

herbicides applied using drones are evaluated against traditional spraying methods. The integration of 

deep learning techniques in unmanned aerial vehicle-based weed mapping is a significant 

advancement, enabling the analysis of complex datasets through architectures like convolutional neural 

networks. This review examines the datasets, training techniques, data augmentation strategies, and 

performance metrics crucial for enhancing weed detection accuracy. Our review indicates that 

unmanned aerial vehicles offer a highly efficient, precise, and environmentally friendly alternative to 

conventional weed management practices. This paper provides a detailed comparison of unmanned 

aerial vehicle herbicide sprayers with traditional sprayers, underscoring the potential unmanned aerial 

vehicle technology to revolutionize weed management and improve agricultural sustainability. 

Keywords: Convolutional neural networks, deep learning, herbicide spraying, unmanned 

aerial vehicle, weed mapping. 
 
 

Introduction [ 

Weed management is a decisive component of cutting-edge agriculture, essential for 

ensuring crop health and maximizing yields. Ancestral methods of weed detection and 

herbicide application often involve significant labour, time, and environmental impact due 

to the widespread use of chemicals. UAVs have emerged as a transformative technology in 

this field, offering precise, efficient, and environmentally friendly solutions for weed 
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mapping and herbicide spraying. UAVs, commonly known as drones, are increasingly being 

utilized in agricultural practices due to their ability to cover large areas quickly and collect 

high-resolution data. These UAVs can be equipped with a variety of sensors and cameras 

that facilitate the detection and mapping of weeds with high accuracy. This technology 

allows for the targeted application of herbicides, reducing the overall amount of chemicals 

used and minimizing their impact on the environment (Huang et al., 2018). The types of 

UAVs used in weed management vary in terms of size, capability, and the type of sensors 

they carry. Multi-rotor drones, fixed-wing drones, and hybrid drones each offer distinct 

advantages and limitations depending on the specific application (Zhang & Kovacs, 2012). 

Multi-rotor drones are highly maneuverable and suitable for small areas or fields with 

complex terrain, while fixed-wing drones can cover larger areas more efficiently. Hybrid 

drones combine the benefits of both types, offering extended flight times and enhanced 

manoeuvrability. Sensors such as multispectral, hyperspectral, and RGB cameras play a 

crucial role in weed detection by capturing detailed images that can be analyzed using 

advanced algorithms. Multispectral sensors capture data in specific wavelength bands, 

providing information about plant health and stress. Hyperspectral sensors collect data 

across a wide range of wavelengths, allowing for detailed analysis of plant characteristics 

and better discrimination between crop and weed species. RGB cameras, though less 

sophisticated, are cost-effective and useful for general weed mapping tasks (Torres-Sánchez 

et al., 2015). The integration of advanced imaging techniques with UAV technology has 

significantly enhanced the capability of weed detection. These techniques involve the use 

of image processing algorithms to analyze the captured data and identify weed species. 

Machine learning and deep learning algorithms, in particular, have shown great promise in 

improving the accuracy and efficiency of weed detection (Lottes et al., 2017). Deep learning 

techniques, such as convolutional neural networks (CNNs), allow for the analysis of 

complex datasets and the development of robust models for weed detection. These models 

can learn to recognize weed patterns from large datasets, improving over time as more data 

is collected. This capability is crucial for creating accurate weed maps, which can be used 

to guide targeted herbicide application (Kamilaris & Prenafeta-Boldú, 2018). UAVs 

equipped with precision spraying systems can apply herbicides directly to identified weed 

patches, reducing the overall amount of chemicals used and minimizing their impact on the 

environment. This targeted approach is not only more efficient but also more cost-effective 
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compared to conventional blanket spraying methods (Zhang et al., 2020). UAVs can operate 

in a variety of climatic and edaphic conditions, offering flexibility that traditional methods 

lack (Jiang et al., 2019). Different herbicides can be dispersed using UAVs, and their 

effectiveness can vary based on climate and soil factors. Studies have shown that UAV-

based herbicide application can achieve comparable or even superior results to conventional 

methods in terms of weed control and crop yield (Zhang et al., 2020). The persistence of 

herbicides applied via UAVs has also been a subject of study, with findings indicating that 

UAV applications can lead to more uniform coverage and better penetration in dense crop 

canopies (Zhao et al., 2019). Comparing UAV technology with conventional weed 

management methods reveals several benefits. UAVs provide precise and targeted herbicide 

application, which can lead to cost savings and reduced environmental impact. Additionally, 

UAVs can operate in a variety of climatic and edaphic conditions, offering flexibility that 

traditional methods lack. UAVs also reduce the need for manual labor and can cover large 

areas quickly, making them an attractive option for large-scale farming operations (Raja et 

al., 2020). Deep learning techniques have further enhanced the capability of UAVs in weed 

mapping. These techniques allow for the analysis of complex datasets and the development 

of robust models for weed detection. Convolutional Neural Networks (CNNs) and other 

deep learning architectures can analyze high-resolution images captured by UAVs to 

identify and classify weed species with high accuracy. The use of large, annotated datasets 

and advanced training techniques has been crucial in developing these models (Sa et al., 

2018). Data augmentation techniques, such as rotating, flipping, and scaling images, are 

used to increase the diversity of training data and improve the robustness of deep learning 

models. Performance metrics, such as precision, recall, and F1 score, are used to evaluate 

the accuracy of these models and their effectiveness in real-world scenarios (Milioto et al., 

2019). This review paper provides a comprehensive overview of the advancements in UAV 

technology for weed mapping and herbicide spraying. It covers the types of UAVs and 

sensors used, the efficiency and persistence of herbicides applied via UAVs, and the 

application of deep learning in weed detection. Furthermore, it compares UAV-based 

methods with conventional technologies, highlighting the potential of UAVs to 

revolutionize weed management practices. 

 

2. UAV in Weed mapping. 
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Drones are being used for weed mapping in precision agriculture (Gunasekaran and 

Raja.,2023). Cameras mounted on Unmanned Aerial Vehicles (UAVs) are employed to 

photograph agricultural fields, and machine learning algorithms are then used to identify and 

classify weeds (Ran and Meng ., 2023).Various measurements, including spectral, textural, 

structural, and thermal, are integrated to enhance the precision of weed identification 

(Mahmoud, 2023).The combination of textural, structural, and thermal characteristics has 

proven to be most effective in mapping weeds. Moreover, the application of deep neural 

networks along with unscented Kalman filter estimation methods has been suggested for the 

automatic detection and localization of weeds using drone imagery. These technological 

improvements in drones and analytical methods are vital for quick and efficient weed 

identification, crucial in managing weed growth and supporting crop yield within the 

framework of precision agriculture. UAVs can quickly cover large areas of land, capturing 

photographic images to identify patches of weeds (H. Li, 2019). And these images are 

processed using deep neural networks (DNN), convolutional neural networks, and object-based 

image analysis (OBIA) techniques. A technique that uses color analysis to identify green 

weeds, such as Cirsium arvense, in cereal crops prior to harvesting has been adopted. RGB 

cameras mounted with UAV have successfully identified 92-97% of the areas where C. arvense 

was the predominant weed under different environmental conditions (J. Rasmussen and J. 

Nielsen., 2019). Improving weed identification accuracy in an MD4-1000 quadcopter model 

requires pinpointing the exact location of each plant in the crop row formation. The method for 

creating weed maps operates autonomously in three steps: 1) classifying crop rows, 2) 

distinguishing between crop plants and weeds using their respective locations, and 3) creating 

a map of weed presence using a grid system. This approach aids in minimizing the use of 

herbicides by adjusting the amount applied based on the level of weed invasion observed (J.M. 

Pen˜a, 2013). The UAV eBee, fitted with GPS, collects multispectral images to identify 

infestations of weeds like lamb's quarters (Chenopodium album) and thistle (Cirsium arvense) 

within maize crops. This study highlights the significance of spatial resolution in identifying 

weeds of specific sizes, an essential factor for advancing UAV-based technology for weed 

detection (M. Louargant and S. Villette., 2017). One notable study by Torres-Sánchez et al. 

(2015) utilized drones equipped with multispectral sensors for weed detection and mapping in 

agricultural fields. The authors demonstrated the potential of drones to accurately identify and 

map different weed species, highlighting their efficacy in precision agriculture applications. 
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Similarly, the research conducted by Qin et al. (2016) employed unmanned aerial vehicles 

(UAVs) to monitor and map weed distribution in maize fields. The study demonstrated the 

capability of drones to capture detailed spatial information of weed infestations, aiding in 

targeted weed management strategies. Furthermore, the work of Calle et al. (2019) focused on 

using drones for weed mapping in vineyards. By employing aerial imagery captured by UAVs, 

the researchers successfully identified and mapped weed species within vineyard plots, 

showcasing the utility of drones for site-specific weed management. the use of UAVs to detect 

stress in tomatoes caused by herbicide drift. The UAV equipped with sensors detected subtle 

differences in plant stress induced by herbicide application, demonstrating the potential for 

targeted herbicide spraying (Zhang, M.,2018). the use of small UAVs for precision agriculture, 

including their application in herbicide spraying. It discusses the benefits and challenges of 

using UAVs for herbicide application and highlights their potential for improving efficiency 

and reducing herbicide use. (Bates, T.,2018).  UAV-based aerial imagery for early detection of 

weed competition in maize fields. It demonstrates the potential of UAVs to detect weeds early 

in the growing season, allowing for timely herbicide application to mitigate weed competition. 

(Marchi, M.,2019). 

2.1 Types of UAV used in Weed management for Weed detection and Herbicide spraying. 

The application of UAVs for herbicide spraying involves the evaluation of spray volume, 

droplet size, and deposition to optimize the control of pests and diseases in crops (Wang et al., 

2019). Additionally, the use of UAVs for early weed detection and mapping facilitates the 

generation of site-specific weed treatments, reducing the overall use of herbicides while 

enhancing their chemical effects (Huang et al., 2018). Images were gathered at an altitude of 

30 meters using a DJI Phantom 4 Pro quadcopter (DJI), with mission planning conducted via 

the Pix4D Capture application on an iPad mini 4 (Apple, Cupertino, CA, USA). These images 

were then stitched together using Agisoft PhotoScan 1.4.4 software (Agisoft, LLC, St 

Petersburg, Russia) to produce an orthophoto with a spatial resolution of 0.82 cm per pixel for 

the entire experimental field. Ground landmarks were utilized to validate coordinates (Hunter, 

J.E., 2020). LiDAR-equipped UAVs employ laser scanning technology to generate detailed 3D 

models of terrain and vegetation. These models enable accurate detection and mapping of 

weeds (Anderson et al., 2018). A technique that utilizes color analysis to identify green weeds, 

specifically Cirsium arvense, in cereal crops prior to harvesting has been put into practice. In 

different environmental conditions, RGB cameras were able to accurately classify between 
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92% and 97% of the areas where C. arvense was prevalent (J. Rasmussen et.al 2019). Compact 

consumer drones, such as the Phantom 3 or 4, have the ability to map 10 hectares in 20 minutes 

while flying at a height of 40 meters. In a particular vineyard, a quadcopter drone was used to 

take aerial RGB (red-green-blue) photographs for the purpose of mapping weed patches. This 

enabled the optimization of targeted weed management while C. dactylon was in its dormant 

phase, using an Object-Based Image Analysis (OBIA) strategy for the early identification and 

mapping of these areas (A.I. de Castro et al. 2017). Fixed-wing UAVs offer long flight 

endurance and are suitable for large-scale weed detection. They can carry different types of 

sensors, such as multispectral or hyperspectral cameras, to identify weeds. (Torres-Sánchez et 

al., 2018). Thermal cameras mounted on UAVs can detect temperature differences between 

weeds and crops, making them useful for weed identification, especially in early stages of 

growth. (Khan et al., 2020). Helicopter-style UAVs offer a balance between multirotors and 

fixed-wing UAVs. They can handle larger payloads and are often used for herbicide spraying 

in vineyards and orchards (Yang, P., Zhou, Q., & Zhang, F. 2013). The MD4-1000 quadcopter 

UAV, equipped with GPS and either an RGB or multispectral camera, is used to identify and 

map weeds, crop rows, and bare soil. This process is carried out using a suitable and automated 

object-based image analysis (OBIA) framework, which helps in generating precise maps for 

site-specific herbicide application (F. Lo´pez-Granados et al.  2016). The UAV eBee, outfitted 

with GPS technology, is capable of taking multispectral photographs to identify weed 

infestations, specifically lamb's quarters (Chenopodium album) and thistle (Cirsium arvense), 

within maize crops. This research highlights two dicotyledonous weeds and emphasizes the 

crucial role of spatial resolution for recognizing various weed sizes, an essential factor in 

advancing drone-based weed detection methods (M. Louargant et al. 2017). The analysis of 

images of weeds makes use of advanced machine learning techniques, including DNN, CNN, 

and OBIA methods. A thorough review of studies on identifying weeds using unmanned aerial 

vehicles (UAVs) identifies three main types of imaging technologies: RGB (standard color 

imaging), multispectral, and hyperspectral cameras.(. (W.H. Maes., 2019 and D.C. Tsouros., 

2019). 
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Table 1: Types of drones 

 

Multi-rotor drones are popular for their ease of use, VTOL capability, and ability to hover, 

making them ideal for aerial photography and inspections. However, they have limited flight 

time and payload capacity, with prices ranging from $5,000 to $65,000. Fixed-wing drones 

offer longer flight endurance and cover larger areas but require space for launch and lack hover 

capabilities, costing $25,000 to $120,000. Single-rotor drones have better endurance and 

payload capacity but are more dangerous and expensive, typically used for LIDAR scanning. 

Fixed-wing hybrid drones combine VTOL and long endurance but are still under development. 

Drone 

Type 

Advantages Disdavantages Uses/Price 

Multi 

rotor 
• High accessibility 

• User-friendly 

• Vertical Takeoff and 

Landing (VTOL) and 

hover capability 

• Excellent camera 

control 

• Capable of operating in 

confined spaces 

• Limited flight duration 

• Low payload capacity 

• Aerial photography 

and videography 

• Aerial inspections 

• Price: $5,000 - 

$65,000 for 

professional models 

Fixed 

wing 
• Long flight endurance 

• Large area coverage 

• High-speed flight 

• Requires ample space 

for launch and 

recovery 

• No VTOL/hover 

capability 

• More complex to 

operate, requiring 

additional training 

• High cost 

• Aerial mapping 

• Pipeline and power 

line inspections 

• Price: $25,000 - 

$120,000 for 

professional models 

Single 

rotor 
• VTOL and hover 

capability 

• Longer endurance with 

gas-powered options 

• Greater payload 

capacity 

• Increased danger 

• More difficult to 

operate, necessitating 

more training 

• Expensive 

• Aerial LIDAR laser 

scanning 

• Price: $25,000 - 

$300,000 for 

professional model 

Fixed 

wing 

hybrid 

• VTOL capability 

• Extended flight 

endurance 

• Not optimized for 

either hovering or 

forward flight 

• Still under 

development 

• Drone Delivery 

• Price: TBD, under 

development 
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Table 2: Sensors/cameras used to map the weeds for site specific herbicide spraying 

 

 

 

 

Figure 1: Types of UAVs/drones for mapping weeds 

 

 

 

 

 

 

 

 

 

 

Figure 2: Sensors/Cameras equipped with UAVs for weed mapping 

 

 

 

 

 

 

 

Sensor Type 

Principle of 

Operation 

Examples of Weeds Detected Citation 

RGB Cameras Captures red, green, 

and blue light 

images 

Dandelion (Taraxacum spp.), Chickweed 

(Stellaria media), Crabgrass (Digitaria spp.), 

Nutsedge (Cyperus spp.) 

Nguyen et al., 

2020 

Multispectral 

Sensors 

Captures data at 

specific wavelength 

bands 

Pigweed (Amaranthus spp.), Lambsquarters 

(Chenopodium album), Wild Mustard (Sinapis 

arvensis), Bindweed (Convolvulus arvensis) 

Ge et al., 

2019 

Hyperspectral 

Sensors 

Captures a wide 

spectrum of light 

data 

Johnsongrass (Sorghum halepense), Canada 

Thistle (Cirsium arvense), Wild Radish 

(Raphanus raphanistrum), Foxtail (Setaria spp.) 

Khan et al., 

2018 

LiDAR Uses laser pulses to 

measure distances 

Bushes and woody weeds, Giant Ragweed 

(Ambrosia trifida), Tree-of-heaven (Ailanthus 

altissima), Russian Olive (Elaeagnus angustifolia) 

Tilly et al., 

2014 

Thermal 

Cameras 

Captures heat 

emissions 

Nightshade (Solanum spp.), Ragweed (Ambrosia 

artemisiifolia), Velvetleaf (Abutilon theophrasti), 

Johnson Grass (Sorghum halepense) 

Rasmussen et 

al., 2019 

 

(a) Multi rotor            (b) Fixed wing                   (c) Single rotor                (d) Fixed wing hybrid 

VTOL 

 

 

       

(a) RGB Camera      (b) Multispectral Sensor   (c) Hyperspectral Camera    (e) Thermal Camera     (d) LiDAR Sensor 
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3. Comparison of Unmanned Ariel Vehicle technology and conventional technology in 

weed management 

 

3.1 Weed detection and herbicide spraying 

 

UAV technology has demonstrated superiority in weed detection compared to conventional 

technology. Remote imagery obtained from UAVs holds notable promise for developing 

precise, site-specific weed management strategies during early post-emergence, capabilities 

that were previously unattainable with conventional airborne or satellite images (Peña et al., 

2013). UAVs can capture high spatial resolution imagery, providing more detailed information 

for weed mapping compared to satellite and piloted aircraft remote sensing (Huang et al., 

2018). Research indicates that UAV hyperspectral imaging techniques have become an 

invaluable tool in agricultural remote sensing, offering significant potential for weed detection 

and species differentiation (Sulaiman et al., 2022). Additionally, the integration of UAV 

technology with machine learning techniques has been found to be efficient and practical for 

detecting weeds from UAV images (Islam et al., 2021). Furthermore, the use of UAVs has been 

proposed for performing spraying, graded as safer and more precise compared to traditional 

methods (Khan et al., 2021). In contrast, conventional technology such as ground-based robots 

equipped with RGB cameras have been utilized for automated weed removal, employing either 

targeted herbicide spraying or mechanical in-row elimination (Dobbs et al., 2022). 

Additionally, LiDAR technology has been explored for ground weed detection in agricultural 

fields (Peteinatos et al., 2013). However, the potential of ground-based sensor technologies for 

weed detection is limited to detecting growing plants, with little opportunity for further 

development to discriminate between crop and weed plants (Coleman et al., 2021). UAV 

technology has shown significant advantages over conventional technology in weed detection. 

Studies have demonstrated that UAVs can capture high spatial resolution imagery, providing 

more detailed information for weed mapping compared to conventional methods (Huang et al., 

2018). The efficacy and limitations of UAV technology for early detection of weed seedlings 

have been quantified, highlighting the potential of UAVs in this application (Peña et al., 2015). 

And the application of hyperspectral remote sensing imagery (HRSI) from UAVs has emerged 
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as a valuable tool for weed detection, showing tremendous promise in agricultural remote 

sensing (Sulaiman et al., 2022). Moreover, an efficient weed detection procedure using low-

cost UAV imagery systems for precision agriculture applications has been proposed, further 

emphasizing the potential of UAV technology in weed management (Hassanein & El-Sheimy, 

2018). Drones fitted with different sensors (e.g., multispectral, hyperspectral, and LiDAR) can 

capture high-resolution imagery of large agricultural areas quickly and efficiently (Hunt et al., 

2019). Conventional methods, such as manual scouting or satellite imagery, are time-

consuming and may not provide sufficient spatial resolution for accurate weed detection 

(Oakes et al., 2017). UAVs can fly at low altitudes, providing high spatial resolution data, 

which is crucial for precise weed identification (Peña et al., 2015). Conventional methods may 

miss small patches of weeds or lack the spatial detail needed for effective management 

(Andújar et al., 2013). UAVs allow for real-time data acquisition and processing, enabling 

immediate weed management decisions (Slaughter et al., 2018). Conventional methods often 

require delayed data analysis and decision-making. Within pre-emergence (PE) spraying 

scenarios, drones have demonstrated a remarkable ability to control weeds, achieving 

efficiencies between 98% and 100% in fields with increased soil moisture and lower levels of 

straw. It's advised to highlight drone application for PE spraying due to its vital role in 

managing weeds effectively. In contrast, the effectiveness of post-emergence (PoE) spraying 

in causing weed damage varies widely, from 10% to 70%, indicating a noticeable resistance 

among weeds to the post-emergence herbicides used in this research (Y. Chen et al, 2018). 

UAVs equipped with advanced sensors and GPS technology can precisely target specific areas, 

reducing herbicide wastage and minimizing environmental impact (Anderson et al., 2018). In 

contrast, conventional ground-based methods may be less accurate in targeting herbicide 

application. UAVs can cover large areas quickly, potentially reducing labor costs and time 

spent on herbicide application (Lelong et al., 2008). Traditional methods may require more 

time and resources. UAVs can access challenging or remote terrain, making them suitable for 

hard-to-reach areas (Hunt et al., 2018). Conventional methods may struggle in such conditions. 

UAVs can also capture data about crop health and weed distribution simultaneously, allowing 

for data-driven decision-making (Dandois and Ellis, 2010). This integration is harder to achieve 

with conventional methods. UAVs can reduce herbicide drift and over-application, potentially 

minimizing environmental harm (Pfender et al., 2015). Conventional spraying methods may 

result in more herbicide dispersion. 
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4. Different herbicides dispersed using UAVs 

Using a drone to apply Fluro Xypyr-meptyl at a concentration of 20% EC, at a volume of 600 

mL per hectare, significantly reduces weed growth and height (K. Zhang et al. 2018). A UAV 

armed with the herbicide combination of diflufenican and isoproturon shows significant 

effectiveness in controlling weeds, achieving more than a 98% reduction in species like 

bedstraw (Galium aparine) and Japanese foxtail within wheat fields (Y. Chen et al. 2018). 

Applying isoproturon clodinafop-propargyl meso-sulfuron herbicides using a UAV shows 

similar weed control results as using a knapsack sprayer. Yet, the knapsack sprayer application 

of meso-sulfuron isoproturon clodinafop-propargyl is shown to be a more efficient method for 

controlling Japanese foxtail weed more so than its Unmanned Aerial Vehicle equivalent. At 

the same time, using UAVs to apply diflufenican + isoproturon leads to a 60% decrease in 

Japanese foxtail seedlings and a 50% decrease in shepherd's purse. In comparison, using a 

knapsack sprayer results in approximately 75 perecnt reduction in Japanese foxtails and 80 

percent reduction in shepherd's purse. Shepherd's purses were planted in a different test plot. 

Moreover, using UAV technology with a combination of flufenacet, diflufenican, and 

flurtamone can effectively manage 70% of Japanese foxtail and 80% of shepherd's purse. 

Conversely, when using a knapsack sprayer, the reduction in Japanese foxtail is less than 85% 

and 80% in shepherd's purse (Y. Chen, 2018). The use of UAV for applying clodinafop-

propargyl, mesosulfuron and isoproturon, herbicides at varying rates results in around 68% and 

72% injury rates, while a knapsack sprayer causes 80% overall injury. In a different field, the 

use of UAVs is being applied. A reduced amount of herbicide combinations causes 

approximately 48-50% damage to Japanese foxtail weeds, while a higher amount results in 62-

65% harm or damage done to the body. Furthermore, a 68% success rate is shown by the 

knapsack sprayer (C. Hiremath,2024). 

Table 3: Comparison of UAV herbicide sprayers with conventional sprayers 
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5. Efficiency of herbicide using UAV technology 

The effectiveness of Unmanned Ariel Vehicle sprayers is now 60 times greater than knapsack 

sprayers. Pre emergence treatments using UAVs and Post emergence treatments with knapsack 

sprayers exhibit enhanced weed control efficacy through different cases. Notably, knapsack 

sprayer treatments cause 56 to 64 percent injury to japanese foxtail, whereas UAV treatments 

result in only 20 to 40 percent injury (Y. Chen, 2019). Compared to previous methods, UAV 

applications are currently 200 percent more effective in detecting and managing weedy areas. 

Although UAVs treat 20 to 60 percent smaller areas than ground-based approaches, ground-

based treatments cover only 2 to 3 percent of the site, whereas UAVs miss 26% of the weedy 

region. UAV treatments surpass broadcast methods by 12 percent at 14 days after treatment 

(DAT) and by 25 percent at 28 DAT for highly aggregated weed densities. However, the 

effectiveness of UAV treatments declines by 15 percent at both 14, 28 days after transplanting 

for denser weed patches with a more homogeneous distribution (A. Chlingaryan, 2018). The 

Attribute UAV Sprayers Boom Sprayers Knapsack 

Sprayers 

Citation 

Application 

efficiency 

High precision; 

uniform application 

High efficiency in 

large fields 

Suitable for small 

areas; moderate 

precision 

Shi, Y., et al. (2018). 

Cost High initial cost; low 

operational cost 

Moderate to high 

initial and operational 

cost 

Low initial cost; high 

labor cost 

Wolf, R.E., & 

Buhler, W.D. (2004). 

Labour 

requirement 

Low; automated 

operation 

Moderate; requires 

skilled operator 

High; labor-intensive Giles, D.K., et al. 

(1996).  

Environmental 

impact 

Low drift; reduced 

chemical usage 

Moderate drift; 

potential for runoff 

High drift; less efficient Felsot, A.S., et al. 

(2011).  

Operational 

flexibility 

High; can operate in 

difficult terrain 

Low; limited to 

accessible large areas 

High; very flexible in 

small and complex 

areas 

Miller, P.C.H., & 

Butler Ellis, M.C. 

(2000).  

Coverage area Moderate; dependent 

on battery life and 

payload 

Very high; covers 

large fields efficiently 

Low; suitable for small 

areas 

Shi, Y., et al. (2018). 

Spray accuracy High; GPS and 

automated controls 

High; consistent spray 

pattern 

Moderate; depends on 

operator skill 

Zhang, C., et al. 

(2016).  

Maintenance Moderate; requires 

technical expertise 

Moderate to high; 

regular calibration 

needed 

Low; simple 

mechanical 

maintenance 

Miller, P.C.H., & 

Butler Ellis, M.C. 

(2000).  

Safety High; remote operation 

reduces human 

exposure 

Moderate; operator 

exposure to chemicals 

Low to moderate; high 

exposure risk 

Felsot, A.S., et al. 

(2011). 
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study findings exhibit that UAV Integrated Spraying is 0.3 to 3 times effective than broadcast 

ground-based sprays in identifying and evaluating weedy target areas. Despite this advantage, 

ground-based applications cover nearly the complete experimental zone but miss 2 to 3 percent 

of the targeted weed patches, whereas UAV applications now dodge up to 26% of the intended 

weedy area (P. Chen, 2020). Compared to knapsack sprayer operation, which uses 140 Litre/ha 

of water, UAV spraying achieves a higher percentage of splash drops at 37.4 Litre/ha, marking 

a fourfold increase. These results suggest that UAVs, rather than backpack sprayers, can 

effectively administer herbicides (D. Martin, 2020). Currently, an AGRAS MG -1 equipped 

with 4 nozzles, a 5.0 m swath, and spraying at a rate of 10 L/ha at a speed of 5.56 m/s covers 

approximately 4 hectares per hour. This efficiency noticeably overtakes that of a knapsack 

sprayer in terms of volume (J.P.A.R. da Cunha, 2021). Researchers assert that compared to 

droplets noticed in ground trials (10–40 droplets per cm), UAV trials demonstrate smaller 

droplet sizes and greater coverage (>60 droplets per cm). Due to its reduced volume and 

enhanced precision relative to traditional ground techniques, UAV testing achieves more 

uniform vertical droplet distribution and offers capabilities for spot or band spraying, which 

are advantageous for drift control and minimization (J.L. Gibbs, 2021). The use of unmanned 

aerial vehicle (UAV) technology has been shown to enhance the efficiency of herbicide 

application in agricultural practices. Zhang et al. (2017) demonstrated the design and testing of 

a six-rotor UAV electrostatic spraying system for crop protection, aiming to improve pesticide 

use efficiency during multi-rotor UAV spraying. This technology offers a promising approach 

to optimize the application of herbicides, potentially leading to more effective weed control. 

Furthermore, the study by Faria et al. (2018) highlighted the high efficiency of herbicides and 

their low costs compared to other methods, emphasizing the advantages of this technology.  
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Table 4: Major UAVs used to map weeds  

 

UAV Model Manufacturer Sensor Type Weed 

Mapping/Detection 

Method 

Flight 

Time 

Battery 

Type 

Payload 

Capacity 

Weight Reference/Citation 

DJI Phantom 4 DJI RGB Camera Image Processing 30 

minutes 

LiPo 

4S 

5350 

mAh 

1.2 kg 1.38 kg Peña, J.M., et al. 

(2013).  

Parrot Sequoia Parrot Multispectral 

Camera 

Spectral Analysis 25 

minutes 

LiPo 

3S 

2700 

mAh 

0.2 kg 0.72 kg Torres-Sánchez, J., 

et al. (2015).  

SenseFly eBee SenseFly Multispectral 

Camera 

NDVI Analysis 50 

minutes 

Li-ion 

3S 

2150 

mAh 

0.55 kg 0.69 kg Lelong, C.C.D., et 

al. (2008). 

AgEagle RX-

60 

AgEagle Multispectral 

Camera 

Vegetation Indices 45 

minutes 

LiPo 

4S 

16000 

mAh 

2.5 kg 2.0 kg Zhang, C., et al. 

(2016). 

PrecisionHawk 

Lancaster 

PrecisionHawk Multispectral 

Camera 

Image 

Classification 

45 

minutes 

LiPo 

4S 

6600 

mAh 

1.1 kg 2.2 kg Lottes, P., et al. 

(2017).  

Trimble UX5 Trimble RGB and 

NIR Cameras 

Machine 

Learning/Deep 

Learning 

50 

minutes 

Li-ion 

4S 

6000 

mAh 

2.5 kg 2.5 kg Pérez-Ortiz, M., et 

al. (2016). 

DJI Matrice 

100 

DJI Hyperspectral 

Camera 

Spectral Analysis 40 

minutes 

LiPo 

6S 

4500 

mAh 

3.6 kg 2.43 kg Nebiker, S., et al. 

(2016) 

DJI Surveyor 

Pro 

DJI RGB and 

Multispectral 

Camera 

Image Processing 25-30 

minutes 

LiPo 

4S 

5870 

mAh 

1.5 kg 1.39 kg DJI. (2023). 

DJI Mavic 3M DJI Multispectral 

Camera 

Spectral Analysis 30 

minutes 

LiPo 

4S 

5000 

mAh 

0.5 kg 0.9 kg DJI. (2023). 

DJI Matrice 

350 RTK 

DJI Multispectral 

Camera 

NDVI Analysis 55 

minutes 

LiPo 

12S 

6800 

mAh 

2.7 kg 3.77 kg DJI. (2023).  

DJI Mavic 3E DJI RGB Camera Image 

Classification 

45 

minutes 

LiPo 

4S 

5870 

mAh 

0.5 kg 0.9 kg DJI. (2023) 

DRONI Garuda 

Aerospace 

Multispectral 

Camera 

Image Processing 20-25 

minutes 

LiPo 

6S 

22000 

mAh 

- - Garuda Aerospace. 

(2023).  
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6. Weed mapping using Deep Learning 

Traditional methods of weed detection are laborious and lengthy. With the advent of precision 

agriculture, there is a growing interest in leveraging deep learning to automate weed mapping. 

Figure 3: Flow chart of deep learning architectures for weed detection 

 

Deep Learning Architectures in Weed Mapping 

Deep learning has revolutionized image analysis, with Convolutional Neural Networks (CNNs) 

being the most popular architecture for weed detection. Recent studies have utilized various 

CNN architectures, including AlexNet, VGGNet, ResNet, and more specialized networks such 

as U-Net and SegNet for semantic segmentation tasks. For instance, researchers have applied 

U-Net for segmenting weed patches in crop fields, achieving high accuracy in distinguishing 

between crops and weeds (Garcia et al., 2020). Another study utilized Faster R-CNN for object 

detection in real-time weed mapping, demonstrating significant improvements in speed and 

accuracy (Kamilaris & Prenafeta-Boldú, 2018). 

Datasets and Training Techniques 

The effectiveness of deep learning models is largely contingent upon the quality and size of 

the training datasets. Publicly available datasets, such as the WeedMap dataset, CWFID 
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(Crop/Weed Field Image Dataset), and the Sugar Beets dataset, have been extensively utilized 

for training weed detection models. (Lottes et al., 2017). Weed data is fundamental to the 

development and benchmarking of weed recognition methodologies. The choice of sensing 

technology significantly impacts the quality and scope of weed data collected, thereby shaping 

the evolution of weed management practices (Machleb et al., 2020). Although various sensing 

techniques, such as ultrasound, light detection and ranging (LiDAR), and optoelectronic 

sensors, have been employed for basic differentiation between weeds and crops, image-based 

weed recognition has attracted considerable interest due to advancements in imaging 

technologies. Multispectral imaging captures light energy across specific wavelength ranges or 

bands of the electromagnetic spectrum, enabling the acquisition of information beyond visible 

wavelengths (Farooq et al., 2018). For example, hyperspectral imaging captures numerous 

contiguous and narrow spectral bands, whereas near-infrared (NIR) imaging targets a specific 

portion of the infrared spectrum. In NIR imaging, chlorophyll in plant leaves absorbs red and 

blue visible light while reflecting near-infrared light. The growing use of low-cost RGB 

cameras, coupled with significant advancements in computer vision, has made RGB images 

particularly popular for weed recognition (e.g., Olsen et al., 2019).  Moreover, some studies 

have combined depth information (the distance between the image plane and each pixel) with 

RGB images using sensors such as the Kinect v2, leading to enhanced segmentation 

accuracy—from 76.4% for color-only images to 96.6% for broccoli detection (Gai et al., 2020)
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Data augmentation 

Data augmentation in weed mapping plays a crucial role in overcoming the challenges of 

obtaining large-scale, labeled weed image datasets for robust identification systems. While 

traditional methods like chemical herbicides are costly and environmentally unfriendly (Daniel, 

Steininger.,2023), recent advancements leverage generative adversarial networks (GANs) and 

diffusion probabilistic models to generate synthetic weed images for training deep learning 

models effectively (Dong, Chen.,2022). These approaches enhance sample diversity and 

fidelity, leading to improved model performance in weed classification tasks (Paolo, 

Fraccaro.,2022) Additionally, the use of Unmanned Aerial Vehicles (UAVs) for imagery 

collection, combined with deep learning methods, demonstrates high accuracy in automatically 

detecting weeds in agricultural fields, such as winter wheat, showcasing the potential for 

operational use and real-world impact in agronomic decision-making.Data augmentation 

techniques, including rotation, flipping, and color jittering, are commonly employed to enhance 

dataset diversity. Transfer learning, where models pre-trained on large datasets like ImageNet 

are fine-tuned on specific weed datasets, has also proven effective in improving model 

performance (Sa et al., 2017). 

Performance Metrics and Evaluation 

The performance of deep learning models for weed mapping is evaluated using metrics such 

as precision, recall, F1-score, Intersection over Union (IoU), and accuracy. For instance, a 

study reported an IoU of 0.85 using a U-Net model for weed segmentation in sugar beet fields, 

indicating high model reliability (Milioto et al., 2018). In binary image classification, where 

each input sample is labeled as either positive (P) or negative (N), there are four possible 

outcomes: (1) If a positive sample is correctly identified as positive, it is a true positive (TP). 

(2) If a negative sample is incorrectly identified as positive, it is a false positive (FP). (3) If a 

negative sample is correctly identified as negative, it is a true negative (TN). (4) If a positive 

sample is incorrectly identified as negative, it is a false negative (FN) (Machleb et al., 2020). 

Using these definitions, several key metrics are commonly used to evaluate algorithm 

performance. Accuracy is the proportion of correct predictions (#TP + #TN) out of all 

predictions (#P + #N). Sensitivity, or recall, is the proportion of correctly identified positive 

cases (#TP) out of all actual positive cases (#TP + #FN). This metric shows the algorithm’s 

ability to detect weeds, where a low sensitivity means many weeds are missed, and a sensitivity 

of 1 indicates perfect detection. Precision is the proportion of correctly identified positive cases 



                                                             Asian Conference on Remote 

Sensing (ACRS 2024)  

Page 18 of 31 
 

(#TP) out of all predicted positive cases (#TP + #FP), indicating the level of off-target detection 

or crop damage. Specificity is the proportion of correctly identified negative cases (#TN) out 

of all actual negative cases (#TN + #FP), showing the algorithm’s tendency to avoid false 

positives. The F-score (or F1 score) combines precision and recall,  

calculated as: 𝐹1 =
2×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 

Binary classification models typically produce continuous predictions, requiring a threshold to 

classify samples as positive or negative. Adjusting this threshold allows for trade-offs among 

metrics. A receiver operating characteristic (ROC) curve illustrates sensitivity versus 1-

specificity across various thresholds, whereas a precision-recall (PR) curve depicts precision 

against recall. A high area under these curves (AUC) signifies a superior model. In the context 

of multi-class classification, these metrics can be computed for each individual class, and the 

mean values can be employed to evaluate overall performance (Farooq et al., 2018). In single-

class object detection tasks, samples are associated with objects within bounding boxes. 

Intersection over Union (IoU) is defined as the intersection area divided by the union area of 

the predicted and ground truth bounding boxes. If the confidence value of a predicted bounding 

box exceeds a threshold and its IoU with the ground truth exceeds 0.5, it is a TP; if the 

confidence is high but IoU is low, it is an FP; if both confidence and IoU are low, it is a TN; if 

confidence is low but IoU is high, it is an FN. Precision and recall metrics measure detection 

quality, and varying the threshold creates a PR curve. Average precision (AP) summarizes the 

PR curve quality, calculated as the area under the curve. Different IoU thresholds, such as 0.5 

(AP50) and 0.75 (AP75), yield different AP values. For multi-class detection, these metrics are 

computed for each class, with the mean average precision (mAP) representing overall 

performance (Olsen et al., 2019). In segmentation tasks, each sample is a pixel. Metrics like 

mean accuracy (mAcc), recall, precision, and F-score are derived similarly. Grouping pixels 

into regions allows the calculation of metrics such as mean average precision (mAP) and mean 

IoU (mIoU) (Li et al., 2019). 

Future Prospects and Uses of UAV Technology in Weed Control 

The review article discusses the existing status and possibilities of UAV technology for weed 

management. Based on this basis, various potential scopes and applications might be imagined 

Integration with IoT and Smart Farming: 
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Future UAV systems might interact with IoT devices and smart agricultural platforms, allowing 

for real-time data collecting and analysis. This would enable faster decision-making and 

automatic reactions to weed detection. 

Enhanced sensor technologies: 

The development of more modern sensors, such as LiDAR and thermal cameras, may increase 

weed identification accuracy in a variety of environments. These sensors may give extra data 

layers, increasing the robustness of weed detection systems. 

Autonomous UAV Swarms: 

The deployment of many UAVs operating together might improve coverage efficiency and 

shorten operation durations. These swarms might communicate and collaborate in real-time, 

enabling large-scale weed mapping and pesticide delivery. 

Precision agriculture with variable rate technology (VRT): 

UAVs might relate to VRT systems to provide accurate pesticide delivery at varied rates. This 

would optimize pesticide use depending on weed density and crop requirements, lowering costs 

and minimizing environmental effect. 

As UAV technology becomes more ubiquitous, clear rules and procedures will be required. 

These laws will enable the safe and effective use of UAVs in agriculture by addressing issues 

such as airspace control, privacy, and chemical application guidelines. 

Commercialization and Industrial Adoption: 

The development of low-cost UAV systems and services designed for small to medium-sized 

farms has the potential to increase industry adoption. Partnerships with agricultural enterprises 

and technology suppliers might help commercialize UAV-based weed control solutions. 

Education and Training Programs: 

Establishing educational programs and training for farmers and agricultural professionals on 

UAV technology and its uses has the potential to speed acceptance and effectiveness. These 

projects might include UAV operation, data analysis, and integration with existing farming 

techniques. 
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Cross-disciplinary Research and Collaboration: 

 

Collaborations among agronomists, engineers, data scientists, and environmentalists might 

result in novel solutions and advances in UAV technology. Interdisciplinary research might 

solve complicated difficulties and increase the overall efficacy of weed management 

strategies. 

Conclusion 

The integration of Unmanned Aerial Vehicles (UAVs) into weed management practices 

represents a significant advancement in agricultural technology. This review has 

comprehensively examined the use of UAVs for weed mapping and herbicide spraying, 

highlighting the various types of UAVs and sensors employed, the methods for weed detection 

and herbicide application, and the comparative advantages of UAV technology over 

conventional methods. UAVs offer unparalleled precision and efficiency in weed detection and 

herbicide spraying. The ability to equip UAVs with Lidar, thermal, multispectral, 

hyperspectral, and RGB cameras allows for high-resolution data collection and accurate weed 

mapping. This precision facilitates targeted herbicide application, reducing the overall use of 

chemicals and minimizing environmental impact. Different types of UAVs, including multi-

rotor, fixed-wing, and hybrid drones, provide flexibility and adaptability to various agricultural 

needs and field conditions. 

The application of deep learning techniques has further enhanced the capabilities of UAVs in 

weed mapping. Advanced algorithms and convolutional neural networks enable the analysis of 

complex datasets, improving the accuracy of weed detection. The use of large, annotated 

datasets and data augmentation techniques enhances the robustness of these models, leading to 

better performance in real-world scenarios. Comparative studies between UAV-based and 

conventional weed management methods demonstrate the superiority of UAVs in terms of 

cost-efficiency, environmental sustainability, and operational flexibility. UAVs can operate in 

diverse climatic and edaphic conditions, making them a versatile tool for precision agriculture. 

The targeted application of herbicides using UAVs not only reduces chemical usage but also 

ensures more uniform coverage and better penetration in dense crop canopies.The efficiency 

and persistence of herbicides applied via UAVs have shown promising results, with UAV 

applications achieving comparable or superior weed control and crop yield outcomes compared 
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to traditional methods. This efficiency is further enhanced by the ability of UAVs to cover large 

areas quickly and reduce the need for manual labor, making them an attractive option for large-

scale farming operations, incorporating drone technology for herbicide application and weed 

detection in contemporary agriculture marks a significant advancement. 
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