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Abstract: Timely and accurate mapping of forest types is essential for forest resource inventories,
providing critical support for forest management, conservation biology, and ecological restoration.
Tree species classification plays a significant role in promoting sustainable forest management and
protecting ecological environments. In this study, Sentinel-1 and Sentinel-2 data were utilized to
classify six dominant tree species in the Chengde and Beijing regions: Larix spp., Pinus tabulaeformis,
Platycladus spp., Quercus L., Betula spp., and Betula platyphylla. To effectively capture temporal
variations, data were acquired in March, June, September, and December 2020, and a variety of
features were extracted, including Sentinel-1 bands, spectral indices, Sentinel-2 bands, spectral
indices, texture features, and topographic variables. Forest inventory data were employed as sample
information to explore the optimal combination of input variables. In total, 1,519 field survey samples
were used to construct training and testing datasets. The classification process employed both the
Random Forest (RF) and XGBoost algorithms, with model performance evaluated using the out-of-
bag (OOB) score and cross-validation methods. Results indicated that the highest classification
accuracy for the RF model (78.07%, kappa = 0.691) was achieved when Sentinel-1, Sentinel-2 indices,
Sentinel-2 texture features, and digital elevation model (DEM) data were used as input variables. For
the XGBoost model, the highest classification accuracy (81.25%, kappa = 0.737) was obtained when
Sentinel-1, Sentinel-2 bands, Sentinel-2 indices, Sentinel-2 texture features, and DEM data were
incorporated. In the study area, Quercus spp. was the dominant tree species, covering 66% of the
area, followed by Pinus tabulaeformis, which occupied 19.7%. The results demonstrate the potential
of using Sentinel-1 and Sentinel-2 data for tree species classification, and highlight the effectiveness
of machine learning algorithms in this application. This study underscores the capability of combined
synthetic aperture radar (SAR) and optical data for large-scale tree species classification and
suggests significant implications for forest monitoring and management..
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1. Introduction
Forests, as a key component of terrestrial ecosystems, play an essential role in maintaining

biodiversity, regulating the global climate, sustaining ecological balance, and contributing to

the global carbon cycle (Sabins Jr & Ellis, 2020). Effective and scientific management of

forest resources requires a comprehensive understanding of forest types, quantities, and
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spatial distributions. Accurate identification of tree species is fundamental to the sustainable

utilization and conservation of forest resources (Fassnacht et al., 2016). However, traditional

methods of forest resource inventory, which largely rely on ground-based surveys, are often

constrained by high costs, time consumption, labor intensity, and limited spatial coverage.

These shortcomings hinder their ability to meet the needs of contemporary forest resource

management, particularly in providing detailed spatial information on forest stand types.In

contrast, remote sensing technology offers large-scale spatial data and, compared to

traditional ground-based forest assessments, provides significant advantages, including

macroscopic perspective, rapid data acquisition, and cost-efficiency(Sabins Jr & Ellis, 2020).

The integration of satellite remote sensing in forest resource surveys enhances the precision

and efficiency of forest resource assessment and management. Tree species identification

using satellite imagery is a critical tool for quantitatively estimating forest leaf area index,

carbon storage, and biomass. Additionally, it supports efforts to address key "carbon cycle"

challenges, such as the determination of "carbon sources" and "carbon sinks" (Dalponte et al.,

2012). This technological advancement is instrumental in advancing forest resource

monitoring and promoting sustainable forest management practices.

In recent years, optical, LiDAR, and radar remote sensing data have been successfully

employed in forest tree species classification, yielding promising outcomes (Fassnacht et al.,

2016). Remote sensing imagery with medium spatial resolution, characterized by high

temporal and spectral resolution, extensive spatial coverage, a short revisit cycle, and

substantial data accumulation over extended periods, represents a valuable data source for

enhancing the accuracy of forest type extraction. It is particularly well-suited for large-scale

regional applications (Michałowska & Rapiński, 2021). However, meteorological factors can

introduce considerable variability in tree species classification when relying on single-date

remote sensing data. Therefore, the use of multi-temporal remote sensing data has proven to

significantly improve the accuracy of dominant tree species identification by leveraging the

temporal variability of multispectral data(Persson et al., 2018). With the rapid advancement

of hyperspectral remote sensing, hyperspectral imagery, which offers enriched spectral

information, has been demonstrated as a highly effective tool for tree species classification in

numerous studies (Dalponte et al., 2012). However, challenges associated with the

acquisition of hyperspectral data, coupled with the complexity of data processing, currently

limit the application of hyperspectral remote sensing for tree species classification to smaller

forest areas. Simultaneously, advancements in aerial platforms and unmanned aerial vehicles

(UAVs) have spurred rapid developments in airborne LiDAR technology. Owing to its ability
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to accurately capture the three-dimensional structural characteristics of trees, airborne LiDAR

data has been widely utilized in the mapping of forest species composition.

In conclusion, various remote sensing data deployed on different platforms exhibit distinct

strengths and limitations in tree species classification. Consequently, recent research has

increasingly focused on the fusion of multi-source remote sensing data to enhance

classification accuracy. This approach leverages the integration of data from different spatial

and spectral resolutions, as well as multiple sensor platforms, to mitigate the limitations of

single-source data. Compared to the challenges associated with acquiring and processing

hyperspectral data for large-scale tree species distribution mapping, freely available Sentinel-

1 and Sentinel-2 data are increasingly favored by researchers. Since its launch in 2015,

Sentinel-2, with its red-edge bands and high spatial resolution, has proven to be highly

effective for large-area vegetation monitoring. For example, Magnus Persson utilized

Sentinel-2A to study tree species classification in Swedish forests, demonstrating its efficacy

for this purpose (Michałowska & Rapiński, 2021). Radar data, characterized by its all-

weather and day-and-night monitoring capabilities, is particularly valuable for classifying

tropical and subtropical wetland vegetation(Michałowska & Rapiński, 2021). Onojeghuo et al.

employed C-band Sentinel-1 data on the Google Earth Engine (GEE) platform for tree

species classification in Canadian wetland reserves. By combining radar data with machine

learning algorithms, they achieved high classification accuracy(Onojeghuo et al., 2021). A

review of the existing literature indicates that the fusion of multispectral, radar, and

topographic data yields superior classification results(Abdollahnejad & Panagiotidis, 2020).

Therefore, this study utilizes Sentinel optical imagery, Sentinel radar data, and multi-

temporal satellite imagery as primary data sources. Topographic data is incorporated as

auxiliary information to investigate the optimal classification model using various machine

learning algorithms under different data input scenarios. This approach aims to enhance the

precision of tree species classification and contribute to advancements in forest resource

monitoring.

In the domain of tree species identification and classification, object-based classification is

a widely adopted approach for hyperspectral data, as it allows for the extraction of detailed

tree species information(Franklin & Ahmed, 2018). With the continuous advancement of

deep learning models, these methods have facilitated automatic feature extraction and end-to-

end tree species classification by processing hyperspectral data(Fujimoto et al., 2019).

However, such approaches are primarily designed for hyperspectral data, limiting their

scalability and applicability for tree species classification across large geographical
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areas(Fassnacht et al., 2016). In contrast, tree species classification based on the fusion of

multi-source remote sensing data typically relies on machine learning techniques(Franklin &

Ahmed, 2018). Commonly used models in this context include Random Forest (RF), and

eXtreme Gradient Boosting (XGBoost).

In this study, multi-source remote sensing data, including band information, remote

sensing indices, texture features, and topographic information, are processed and utilized as

input for various classification models. These datasets are grouped and fed into different

models to evaluate the effectiveness of each type of remote sensing data in tree species

identification. By comparing the classification accuracies of these models, the study aims to

determine the model that delivers the highest accuracy in tree species classification.

Ultimately, this research seeks to produce a comprehensive tree species distribution map for

the study area, which will provide valuable data for subsequent estimation of aboveground

forest biomass. Furthermore, the results will offer critical insights to forestry departments,

aiding in forest resource management and conservation efforts.

2. Materials and Methods
2.1 Study Area:

This study focuses on two regions: Beijing and Chengde. Beijing, situated in the North

China Plain, spans from 115°42′E to 117°42′E longitude and 39°24′N to 41°36′N latitude,

covering a total area of approximately16,400km ² . Forest resources in Beijing are

predominantly distributed in the mountainous areas to the west and north, with the primary

tree species including Pinus tabuliformis, Larix spp., Platycladus orientalis, and Betula

spp.(Li et al., 2015). According to the Beijing Statistical Yearbook, as of 2020, the forested

area reached 848,000 hectares, with a forest coverage rate of 44.4%.Chengde, adjacent to

Beijing, is located between 115°54′E and 119°15′E longitude and 40°11′N and 42°40′N

latitude, encompassing an area of 39,500 km². As of 2020, Chengde's forest resources cover

2.37 million hectares, with a forest coverage rate of 60%, accounting for 35.7% of the total

forest area in Hebei Province. The dominant tree species in Chengde are Pinus tabuliformis,

Platycladus orientalis, Betula spp., and Quercus spp.(Ming et al., 2021).
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Figure 1: Sampling points in the study area and the sample plot.

2.2 Sentinel-1:

The Sentinel-1 satellites are equipped with C-band synthetic aperture radar (SAR) and

offer four distinct imaging modes: Extra Wide Swath (EW), Strip Map Mode (SM), Wave

Mode (WV), and Interferometric Wide Swath (IW). For the purposes of this study, Sentinel-1

IW mode Ground Range Detected (GRD) data are utilized, specifically focusing on the VV

(Vertical-Vertical) and VH (Vertical-Horizontal) dual-polarization characteristics for

subsequent analysis(Torres et al., 2012).

2.3 Sentinel-2:

The Sentinel-2 satellites, equipped with high-resolution multispectral imaging instruments,

are specifically designed for terrestrial monitoring, providing detailed imagery of vegetation,

soil, water bodies, as well as inland and coastal regions(Drusch et al., 2012). In this study,

Sentinel-2 data were sourced from the Google Earth Engine (GEE) platform, encompassing

the months of March, June, September, and December 2020, to represent seasonal variability.

Initially, cloud masking techniques were applied to exclude cloudy pixels and ensure the

retention of high-quality, cloud-free data(Coluzzi et al., 2018). Subsequently, monthly

composite remote sensing images were generated using the median compositing method.
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Vegetation indices were derived based on the available 12 spectral bands, with the specific

indices utilized outlined in the corresponding table.

2.4 Field Data and Auxiliary Data:

Forest resource survey data provide an objective representation of ground conditions and

the status of forest resources during the study period, offering crucial insights into the spatial

distribution of vegetation and land cover types within the study area(Majasalmi et al., 2018).

In this study, data from the ninth national forest resource inventory were utilized, which

includes detailed records of dominant tree species within the sample plots. This inventory is

conducted on a five-year cycle, with a total of 1,519 survey plots distributed across Beijing

and Chengde, as shown in Figure 1. All survey data are based on 2020 records, aligning with

the temporal scope of the satellite imagery employed in the classification process.

Furthermore, Shuttle Radar Topography Mission (SRTM) Digital Elevation Model (DEM)

data were incorporated as auxiliary data, providing three topographic variables: elevation,

slope, and aspect(Sesnie et al., 2008).

2.5 Data Processing:

Sentinel-1 data ('COPERNICUS/S1_GRD') in Interferometric Wide Swath (IW) mode

were acquired from Google Earth Engine (GEE) for vertical-vertical (VV) and vertical-

horizontal (VH) polarization backscatter coefficients for the months of March, June,

September, and December 2020. From this dataset, three indices were computed: Backscatter

Division, Backscatter Difference, and Backscatter Amplitude(Alexander et al., 2010).

For Sentinel-2 data ('COPERNICUS/S2_SR_HARMONIZED'), spectral bands B2, B3, B4,

B5, B6, B7, and B8 were utilized. Eight vegetation indices were derived: Normalized

Difference Vegetation Index (NDVI)(Madonsela et al., 2018), Modified Normalized

Difference Water Index (MNDWI)(Sun et al., 2021), Normalized Difference Built-up Index

(NDBI)(Dalponte et al., 2014), Enhanced Vegetation Index (EVI)(Arvor et al., 2011), Burn

Severity Index (BSI)(Cornelis et al., 2010), Sentinel-2 Red-Edge Position Index

(S2REP)(Bhattarai et al., 2022), Green Normalized Difference Vegetation Index

(GNDVI)(Otsu et al., 2019), and Meris Terrestrial Chlorophyll Index (MTCI)(Choi et al.,

2011). Additionally, texture features were extracted from the red-edge bands of Sentinel-2

using the Gray-Level Co-occurrence Matrix (GLCM)(Yang et al., 2019), resulting in eight

texture metrics: Mean, Variance, Homogeneity, Contrast, Dissimilarity, Entropy, Angular

Second Moment, and Correlation.In total, the data processing yielded 115 features for

subsequent modeling: 20 features from Sentinel-1 (5 indices across 4 time points), 60 features

from Sentinel-2 spectral bands (15 bands across 4 time points), 32 texture features from
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Sentinel-2 (8 features across 4 time points), and 3 topographic features. These features will be

employed in the development of models for classifying dominant tree species.

Number Feature Formula Source

8 Polarization
bands VV,VH Sentinel-

1
4 Back scatter

difference
VH-VV Sentinel-

1
4 Back scatter

division
VH/VV Sentinel-

1
4 Back scatter

amplitude
��2 + ��2 Sentinel-

1
28 Spectral

bands
Blue,Green,Red,Red-edge1, Red-edge2, Red-

edge3,NIR
Sentinel-

2
4 Normalized

difference
vegetation
index

(NIR - Red) / (NIR+Red) Sentinel-
2

4 Modified
Normalized
Difference
Water Index

(Green – SWIR1) / (Green + SWIR1) Sentinel-
2

4 Normalized
Difference
Built-up
Index

(SWIR1- NIR) / (SWIR1+ NIR) Sentinel-
2

4 Enhanced
Vegetation
Index

2.5 * ((NIR - Red) / (NIR + 6 * Red - 7.5 * Blue
+ 1))

Sentinel-
2

4 Burn
Severity
Index

((SWIR1 + Red) - (NIR + Blue)) / ((SWIR1 +
Red) + (NIR + Blue))

Sentinel-
2

4 Sentinel-2
Red-Edge
Position
Index

705 + 35 * (((RE3 + Red) / 2 - RE1) / (RE2 -
RE1))

Sentinel-
2

4 Green
Normalized
Difference
Vegetation
Index

(NIR - Green) / (NIR + Green) Sentinel-
2

4 Meris
Terrestrial
Chlorophyll

Index

(RE2 - RE1) / (RE1 - Red) Sentinel-
2

32 NIR_textural
features

Mean,Variance,Homogeneity,Contrast,Dissimilarity,
Entroy,Angular Second
Moment,Correlation

Sentinel-
2
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Table 1: Detailed description of all the features.

3. Methodology
3.1 workflow:

Figure 2: Workflow overview.

3.2 Machine Learning Methods:

The Random Forest algorithm, introduced by Breiman et al., is an ensemble learning

method that leverages a collection of decision trees, specifically Classification and

Regression Trees (CART), as base learners. In this approach, multiple decision trees

independently vote on the classification of data, and the majority vote determines the final

classification outcome of the Random Forest. This ensemble method significantly enhances

classification accuracy compared to individual decision trees by reducing variance and

improving generalization(Immitzer et al., 2012).

The XGBoost algorithm, known for its high efficiency in both execution speed and

prediction accuracy, incorporates regularization terms in its cost function to control model

complexity and mitigate overfitting. These regularization terms include penalties on leaf node

weights and tree depth, contributing to the model's robustness and predictive

performance(Zhou et al., 2022).

In this study, we employ both Random Forest and XGBoost algorithms to evaluate various

feature combinations and determine the configurations that yield the highest classification

3 topographic
data

DEM,slope,aspect SRTM
DEM
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accuracy. We examine whether the integration of multi-temporal remote sensing images

improves classification performance. For the Random Forest model, we optimize the

`n_estimators` parameter to identify the most effective ensemble size for achieving the best

classification results. In the case of the XGBoost model, we perform a grid search to fine-

tune four key parameters—`n_estimators`, `learning_rate`, `max_depth`, and `subsample`—

to determine the optimal parameter set for maximizing accuracy. This process aims to

enhance the classification performance of dominant tree species by leveraging the combined

strengths of these advanced machine learning techniques(Wongchai et al., 2022).

3.3 Accuracy Validation:

In Random Forest classification, the Out-of-Bag (OOB) error estimation is an intrinsic

evaluation technique that utilizes Out-of-Bag samples—those not included in the bootstrap

sample of a given tree—for assessing the model's generalization performance(Richter et al.,

2016). This approach obviates the need for additional validation sets or cross-validation by

leveraging the data inherently set aside during training. In our study, we perform OOB

scoring by varying the `n_estimators` parameter, identifying the configuration with the

highest OOB scores as the optimal model. These optimal models are then employed for

subsequent classification tasks using the specified bands.

For the XGBoost model, K-fold cross-validation is employed as the parameter

optimization method to mitigate the risk of overfitting and ensure robust model performance.

During parameter optimization, the K-fold cross-validation technique is applied iteratively

across different parameter settings to evaluate model accuracy(Pal & Patel, 2020). The

average accuracy from ten cross-validation folds is used to determine the optimal parameters.

The final model is configured using the optimal values for `n_estimators`, `learning_rate`,

`max_depth`, and `subsample`, as derived from this parameter optimization process.

Following the selection of the optimal model and input feature combination, the final

model's performance is evaluated using a confusion matrix(Persson et al., 2018). This matrix

provides a detailed visualization of the classification performance by displaying actual versus

predicted categories, with rows representing actual classes and columns representing

predicted classes. Each cell in the matrix reflects the number of samples classified into each

category pair. The confusion matrix enables the computation of various performance metrics,

such as accuracy, precision, and recall, thereby offering a comprehensive assessment of the

model’s performance across different classes. In this study, accuracy and recall rates are

specifically utilized to evaluate and refine the model, with the final assessment being based

on the detailed metrics provided by the confusion matrix.
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4. Results
4.1 Input data combination and filtering

The input data are categorized into several distinct groups based on their characteristics.

The Elevation Data Group includes topographic features such as Digital Elevation Model

(DEM), slope, and aspect. The Sentinel-1 Data Group encompasses polarization bands and

derived indices, including backscatter difference, backscatter division, and backscatter

amplitude. The Sentinel-2 Data Group consists of raw band reflectance values, while the

Sentinel-2 Index Group includes various vegetation indices such as the Normalized

Difference Vegetation Index (NDVI), Modified Normalized Difference Water Index

(MNDWI), Normalized Difference Built-up Index (NDBI), Enhanced Vegetation Index

(EVI), Burn Severity Index (BSI), Sentinel-2 Red-Edge Position Index (S2REP), Green

Normalized Difference Vegetation Index (GNDVI), and Meris Terrestrial Chlorophyll Index

(MTCI). Additionally, the Sentinel-2 Texture Feature Group comprises texture features

extracted from Sentinel-2's red-edge bands using the Gray-Level Co-occurrence Matrix

(GLCM), including metrics such as mean, variance, homogeneity, contrast, dissimilarity,

entropy, angular second moment, and correlation.These data are further organized according

to their temporal characteristics, leading to the formation of various combinations. This

approach integrates features from different periods to capture temporal variations and

enhance the accuracy of tree species classification.

Name Input data combination
s1_s2 Sentinel-1 group, Sentinel-2 group
s1_s2index Sentinel-1 group, Sentinel-2 index group
s1_s2texture Sentinel-1 group,Sentinel-2 texture feature group
s1_s2index_texture Sentinel-1 group, Sentinel-2 index

group ,Sentinel-2 texture feature group
s2_s2index Sentinel-2 group, Sentinel-2 index group
s2_s2texture Sentinel-2 group, Sentinel-2 texture feature

group
s2index_s2texture Sentinel-2 index group,Sentinel-2 texture feature

group
all Sentinel-1 group, Sentinel-2 group,Sentinel-2

index group, Sentinel-2 texture feature group
time_s1_s2(3,6,9,12) Sentinel-1 group, Sentinel-2 group
time_s1_s2index(3,6,9,12) Sentinel-1 group, Sentinel-2 index group
time_s1_s2texture(3,6,9,12) Sentinel-1 group,Sentinel-2 texture feature group
time_s1_s2index_texture(3,6,9,1
2)

Sentinel-1 group, Sentinel-2 index
group ,Sentinel-2 texture feature group

time_s2_s2index(3,6,9,12) Sentinel-2 group, Sentinel-2 index group
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Table 2: Data entry combination details.

The data combinations described above were utilized in both the Random Forest and

XGBoost models. For the Random Forest model, parameter tuning was conducted for each

data combination by varying the `n_estimators` parameter in increments of 5, ranging from

30 to 300. The model's performance was evaluated using the Out-of-Bag (OOB) error

estimation method. The optimal parameter settings for each input data combination were

determined based on accuracy metrics, revealing that the highest prediction accuracy and

kappa coefficient were achieved when incorporating time series data from Sentinel-1,

Sentinel-2 indices, and Sentinel-2 texture features.

Figure 3: Random forest input data combination screening.

Similarly, in the XGBoost model, the aforementioned 16 data inputs were employed, with

adjustments made to four key parameters: `n_estimators`, `learning_rate`, `max_depth`, and

`subsample`. Through parameter optimization, it was found that the combination of Sentinel-

1, Sentinel-2, Sentinel-2 indices, and Sentinel-2 texture features—encompassing all bands—

yielded the highest prediction accuracy and kappa coefficient. Consequently, the final models

time_s2_s2texture(3,6,9,12) Sentinel-2 group, Sentinel-2 texture feature
group

time_s2index_s2texture(3,6,9,12) Sentinel-2 index group,Sentinel-2 texture feature
group

time_all(3,6,9,12) Sentinel-1 group, Sentinel-2 group,Sentinel-2
index group, Sentinel-2 texture feature group
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for subsequent predictions were based on these optimal data input combinations, which

demonstrated superior performance in classification tasks.

Figure 4: XGBoost input data combination screening.

Further parameter optimization was conducted for the selected data combinations in both

the Random Forest and XGBoost models to achieve finer parameter tuning. For the Random

Forest model, the `n_estimators` parameter was refined with a range from 30 to 500 in

increments of 1. The results, as illustrated in the corresponding figure, indicated that the

optimal parameter was ‘n_estimators’= 371. This value was then utilized to construct the final

Random Forest model.

In the case of the XGBoost model, a more detailed parameter tuning process was employed.

Initially, only the `n_estimators` parameter was adjusted, with other parameters set to their

default values. Following this, the parameters `max_depth` and `learning_rate` were

optimized sequentially. The final optimal parameter settings were found to be `n_estimators`

= 124, `learning_rate` = 0.1, and `max_depth` = 14. The model was constructed using these

optimal parameters, and its accuracy was subsequently evaluated to ensure the effectiveness

of the refined settings.
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Figure 5: Curve of parameter adjustment between random forest and XGBoost model.

4.2 Feature importance

Upon finalizing the optimal models, feature importance was assessed and ranked to

identify the most influential variables for classification. The results, detailed in the figure

below, highlight the top 20 features based on their importance scores.

In the Random Forest (RF) model, the most significant features included the Normalized

Difference Vegetation Index (NDVI) for March and the Enhanced Vegetation Index (EVI)

for June. These were followed by the mean texture feature and the Green Normalized

Difference Vegetation Index (GNDVI) for June. Additionally, elevation data emerged as a

prominent feature, underscoring the substantial role of Sentinel-2 vegetation indices in the RF

model. The texture features, while influential, were less dominant compared to the vegetation

indices and elevation data.

In the XGBoost model, NDVI for March also exhibited the highest feature importance,

with EVI and the mean texture index for June following closely. Sentinel-2 band data was

similarly recognized as highly significant, reflecting the model's reliance on both vegetation

indices and texture features for accurate classification.
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These findings underscore the critical role of specific vegetation indices and topographic

features in enhancing the predictive performance of both Random Forest and XGBoost

models.

Figure 5: Feature importance ranking results of random forest and XGBoost models.

4.3 Precision comparison and mapping of tree species classification results

Through the selection of the optimal data combinations and the construction of the most

suitable models, the establishment of the classification models was successfully completed,

yielding accuracy evaluation results for both the Random Forest and XGBoost models. The

performance of each model was assessed using key metrics such as overall accuracy and the

kappa coefficient, ensuring a comprehensive evaluation of their classification capabilities.

These results underscore the effectiveness of the selected features and the applied

methodologies in enhancing tree species classification accuracy across the study area.
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Figure 6: The confusion matrix of six target tree species of random forest model.

Figure 7: The confusion matrix of six target tree species of XGBoost model.

Based on the classification results, the Random Forest model achieved an accuracy of

78.07% with a kappa coefficient of 0.691, while the XGBoost model demonstrated superior

performance with an accuracy of 81.25% and a kappa coefficient of 0.737. A comparison of
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the two models indicates that the XGBoost model outperformed the Random Forest model in

both accuracy and kappa coefficient, and thus the XGBoost model was selected for further

application in the final mapping process.

Figure 8: Distribution mapping of the six dominant tree species.

Utilizing the XGBoost model, the tree species distribution map for the study area was

generated based on the processed remote sensing data. Furthermore, a statistical analysis of

the resulting tree species distribution was conducted, and a pie chart summarizing the area

distribution of the dominant species was produced. The analysis reveals that species such as

Quercus mongolica dominate the study area, covering approximately 66% of the total area,

with extensive distribution throughout the region. Larix spp. is primarily found in the

northern part of Chengde City, particularly in Weichang County. Pinus tabuliformis

represents the second most widespread species, with a distribution spanning the entire study

area. Platycladus orientalis is predominantly located in the Beijing region, while Betula spp.
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is mainly concentrated in northern Chengde. The specific distribution and area proportions of

each tree species are indicated in the accompanying figure.

Figure 9: Statistical mapping of the area of the six dominant tree species.

5. Discussion
Currently, numerous methods exist for the classification of forest tree species with high

accuracy; however, most research focuses on areas such as forest farms and parks where tree

species are uniform and canopy coverage is high. These regions provide easier access to

UAV LiDAR or hyperspectral data, and many studies leverage such data to employ deep

learning techniques for image classification. Nevertheless, the findings from these studies are

difficult to generalize to larger regions, making it challenging to achieve large-scale tree

species classification and mapping. As a result, these methods are often unsuitable for

applications such as national forest resource inventories, environmental monitoring, or carbon

cycle research. Therefore, methods based on multi-spectral data fusion offer significant

advantages, and there is a clear need to further explore multi-spectral approaches for tree

species classification.

In this study, Random Forest (RF) and XGBoost models were compared for tree species

classification, with both models yielding high classification accuracy. The XGBoost model

slightly outperformed the Random Forest model in this study area. Additionally, the results

demonstrated that classification accuracy improves as more input features are incorporated.

Specifically, the use of multi-temporal indices significantly enhances the models'

performance. Generally, adding more features leads to higher classification accuracy,
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suggesting that future research should explore the inclusion of additional indices that reflect

differences between tree species to further improve model performance.

Among the input features, various vegetation indices calculated from Sentinel-2 data

exhibited high importance, indicating that different tree species show significant variability in

visible light indices. Moreover, texture features, such as the mean texture feature, also ranked

highly in importance. For Sentinel-1 data, backscatter coefficients were found to be more

important than derived indices. Regarding Sentinel-2 reflectance data, the March and June

reflectance bands proved to be the most important, reflecting that during the autumn and

winter months, the reflectance differences between tree species diminish as most forests in

the study area consist of deciduous broad-leaved species. During these months, the primary

reflectance content shifts from vegetation to soil, reducing the importance of reflectance

features in classification, a trend also observed in the vegetation indices.

According to the classification results, Quercus L and other oaks were the dominant tree

species in Chengde City, with Pinus tabuliformis being the second most prevalent species.

These two species are widely distributed across the study area. In contrast, Platycladus spp.

was predominantly distributed in Beijing, while Betula spp. and Larix spp. were mainly

found in Chengde. Despite the proximity of Beijing and Chengde, their different altitudes

result in distinct species distributions, with Betula and Larix species more common in

Chengde, and Platycladus prevalent in Beijing.

6. Conclusion

The primary objective of this study is to classify the dominant tree species across a large

forested region. This paper presents a novel approach for identifying and classifying tree

species in Chengde City and Beijing using a combination of Sentinel-1 and Sentinel-2

satellite data, incorporating multiple data input combinations and temporal datasets. As a

result, a 10-meter resolution classification map of the dominant tree species was generated.

The tree species classification data obtained through this study can provide essential decision-

making support for government agencies involved in forest management, planting, and

monitoring.

Through the processing of extensive datasets, six major tree species were classified within

the regions of Chengde and Beijing, including larch, tabaric pine, cypress, oak, and birch.

The results indicated that oak species, such as Quercus L, are the predominant tree species,

covering 66% of the study area. Larch occupies 19.7% of the area, while birch and cypress

cover the smallest proportions.
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By utilizing freely available Sentinel-1 and Sentinel-2 data, this study successfully

generated a large-scale forest tree species distribution map. Validation with ground-truth data

confirmed the reliability of these satellite data for tree species classification, demonstrating

their significant potential for broader applications in forest resource monitoring. Moreover,

the results underscore the effectiveness of machine learning algorithms, such as Random

Forest and XGBoost, in achieving accurate tree species classification across extensive

forested landscapes.
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