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Abstract: Global warming and extreme weather events have caused a serious problem in rice growth. 

In addition, the decline in the number of farmers has led to the necessity of managing expansive tracts 

of farmland. Hence, it is important to quickly detect anomalies in agricultural fields for taking 

appropriate action. Satellite remote sensing has been used to determine the spatial distribution of 

crop growth in large agricultural fields. Mahalanobis distance (MD) and generative adversarial 

network (GAN) are often used as anomaly detection methods. Machine learning-based anomaly 

detection is currently utilized in the medical and manufacturing fields, thus there is a possibility of its 

utilizations in the field of remote sensing as well. The objective of this study is to detect anomalies in 

paddy fields over a wide area using satellite images based on generative adversarial network (GAN). 

We used the Multispectral Instrument (MSI) onboard Sentinel-2 observed on 17 July 2023, in the 

middle of the rice growing season. The target area was the entire Okayama Prefecture, Japan, and 

paddy field pixels were identified by farmland parcel polygon data. The considerable outliers, 

represented by clouds, were removed manually. To distinguish anomaly, the Mahalanobis' distance 

(MD) was calculated for each pixel using 10 bands with the spatial resolution of 10 m and 20 m. 

Anomalous pixels were determined based on the threshold for MD. We modified the GAN models 

from image-based to spectral-based architecture. Two models, the Fast Anomaly Detection with 

Generative Adversarial Networks (f-AnoGAN) and Efficient-GAN, were used to compare performance. 

Both models could generate similar spectral reflectance for normal paddy field pixels using the fully 

connected neural network, and could detect the anomalous pixels that have different spectra from 

those normal pixels. The ROC-AUC of anomaly detection was 95.5% for f-AnoGAN and 97.1% for 

Efficient-GAN, indicating the effectiveness of GAN. The problem is that we do not know whether a 

pixel is abnormal or not from an agricultural point of view, since it is divided into normal and 

abnormal pixels according to its numerical value. 
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INTRODUCTION 

Background 

In Japan, there have been numerous reports of quality losses in paddy rice due to high 

temperature (Ministry of Agriculture, Forestry and Fisheries, 2024). Thus, crops such as 

paddy rice are particularly sensitive to the climate change. In addition, the decline in the 

number of farmers has led to the necessity of managing expansive tracts of farmland. The 

area of farmland per management entity is increasing, and also the amount of abandoned 

farmland is increasing due to the aging of the farming population and lack of labor (Ministry 

of Agriculture, Forestry and Fisheries, 2024). Therefore, it is important to quickly detect 

anomalies in agricultural fields for taking appropriate actions. Satellite remote sensing has 

been used to determine the spatial distribution of crop growth in large agricultural fields. It 

makes easier to implement pesticide/fertilizer sprays and harvests at the appropriate time. 

Furthermore, Sentinel and Landsat satellite imagery is open data, so anyone can easily 

analyze the data.  

Machine learning-based anomaly detection is expected to improve agricultural production by 

detecting the influences of pests and diseases at an early stage. Mahalanobis Distance (MD) 

is a statistical measure for measuring the distance between points and distributions in 

multivariate data analysis. A generative adversarial network (GAN) is a generative model 

that can learn features from prepared data and generate pseudo data. GAN is used not only 

for image generation, but also for removing mosaics from images, audio generation, and 

super-resolution. MD and GAN are also often used for anomaly detection as “unsupervised 

learning,” in which features are learned without providing correct data. Currently, GANs are 

widely used in the field of remote sensing, but most of them deal with super-resolution. 

Machine learning-based anomaly detection is currently utilized in the medical and 

manufacturing fields, thus there is a possibility of its utilizations in the field of remote 

sensing as well.  

Problem Statement 

The problem is that farmers with large tracts of farmland have difficulty in quickly 

recognizing and dealing with anomalies in their farmland. In addition, there are few papers on 

anomaly detection in farmland using satellite remote sensing, and the technology has not yet 

been put to practical use. 

Objective 

Objective of this study is to detect anomalies in paddy fields based on GAN using satellite 

image. Paddy field pixels from satellite images were classified as normal or abnormal using 
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MD. We used Fast Anomaly Detection with Generative Adversarial Networks (f-AnoGAN), 

one of the generative models specialized for anomaly detection. This model was modified 

from an image-based to a spectral-based architecture. By using a fully connected neural 

network, the model is expected to generate similar spectral reflectance for normal paddy field 

pixels. We also used efficient-GAN to compare the accuracy and verify the validity of the 

classification by MD. 

Literature Survey 

Various studies have suggested that anomaly detection using MD and GAN is valuable. 

Panda et al. (2021) analyzed hyperspectral images using Euclidean and Mahalanobis 

distances to classify neutrophils from Chronic Myeloid Leukemia (CML) versus healthy 

blood samples. Seven high information containing bands out of 61 or 49 bands were 

identified for each hyperspectral image using principal component analysis (PCA). The 

limitations of Euclidean distance in classification were described, including the need to 

represent a given distribution by a single point, since Euclidean distance is calculated 

between two points. As a result, The Euclidean distance was found to be superior when it 

came to sensitivity in detecting CML neutrophils whereas the Mahalanobis distance was 

better at detecting healthy neutrophils and distinguishing CML neutrophils from healthy 

neutrophils. 

Schlegl et al. (2019) used f-AnoGAN to detect anomalies in retinal optical coherence 

tomography (OCT) images. They built a generative model of healthy training data, and 

proposed and evaluated a fast mapping technique of new data to the GAN’s latent space. A 

discriminator guided image-to-image mapping approach (izif) was utilized for the first time 

for learning the mapping from images to latent encodings in a subsequent training step. As a 

result, the accuracy of anomaly detection using f-AnoGAN was 93%, which was higher than 

that of other methods. In addition, a visual Turing test with two retina experts showed that the 

generated images are indistinguishable from real normal retinal OCT images. 

Wang et al. (2023) proposed a hyperspectral anomaly detection network based on variational 

background inference and generative adversarial framework (VBIGAN-AD). The proposed 

VBIGAN model could learn the background distribution characteristics of Hyperspectral 

Images and enhance the detection performance by the use of reconstruction errors. The 

VBIGAN framework consisted of sample and latent GANs, which establishes the relationship 

between data samples and latent samples through two sub-networks to capture the data 

distribution. The encoder, generator and the two discriminators each had a fully connected 

layer, and allowed for the generation and identification of pseudo-spectra. Experimental 
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results on five hyperspectral image datasets showed that the accuracy of the proposed model 

was higher than that of other methods.  

Fujioka et al. (2020) used Efficient-GAN-based anomaly detection diagnose images of 

normal tissue, benign masses, or malignant masses on breast ultrasound. Their models are 

based on developed bidirectional GAN methods and simultaneously learn an encoder that 

maps input samples to a latent space along with a generator and discriminator during training. 

This avoided the computationally expensive step of recovering latent expressions during 

testing. The anomaly colormap was created by deriving the difference between the input test 

image and the image generated from the trained generator and by converting from grayscale 

to color scale (jet). Malignant masses had significantly higher anomaly scores than benign 

masses, and benign masses had significantly higher scores than normal tissues. The 

sensitivity, specificity, and the ROC-AUC for distinguishing normal tissue from benign and 

malignant masses were high, and the values for distinguishing normal tissue from malignant 

masses were even higher.  

 

METHODOLOGY 

Satellite Data 

Multispectral Instrument (MSI) onboard Sentinel-2 was used for satellite images because 

they have higher spatial and temporal (5 days) resolutions than other mid-spatial resolution 

images. The MSI specifications are shown in Table 1. The target area is Okayama Prefecture, 

Japan where there is relatively little variation in cropping season. The observation date is 17 

July 2023, in the middle of the rice growing season. The data were downloaded via The 

Copernicus Data Space Ecosystem, considering the geographic locations, season, and cloud 

coverage. Sentinel-2 has 13 bands, but we used 10 bands with spatial resolutions of 10 and 20 

m (Sentinel Wiki 2024). In other words, three bands in the visible region, three bands in the 

red-edge region, two bands in the near-infrared region, and two bands in the short wavelength 

region were used. 

Table 1: MSI Specifications 

Sentinel-2 

Satellite Platform Sentinel-2B 

Equipments Multispectral Instrument (MSI) 

Product type Level 1C 

Observation width (km) 290 
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Observation frequency (day) 10 

 

 

 

Spectral wave region 
(nm) and spatial 

resolution (m) of the 
band used in this 

study 
 

 

 

Band 2, Blue 490 10 

Band 3, Green 560 10 

Band 4, Red 665 10 

Band 5, VNIR 705 20 

Band 6, VNIR 740 20 

Band 7, VNIR 783 20 

Band 8, NIR 842 10 

Band 8a, NIR 865 20 

Band 11, SWIR 1610 20 

Band 12, SWIR 2190 20 

 

Paddy Field Map 

Farmland parcel polygon data was used to identify the location of paddy fields. This polygon 

data, called "fude polygon" in Japanese, is information on agricultural land parcels that can 

be used in geographic information system (GIS) software. The data have been developed by 

the Statistics Department of the Ministry of Agriculture, Forestry and Fisheries (MAFF) in 

Japan for a comprehensive survey of arable land area. Each polygon has attribute data of an 

ID, type of arable land, year of publication, and latitude and longitude center-of-gravity 

coordinates. The data were downloaded for the fiscal year 2023 from the MAFF site. Only 

rice fields were used between two types of arable land (fields and paddies of rice).  

Image Processing 

The considerable outliers, mainly due to clouds, were removed manually. In addition, all 

bands with a spatial resolution of 20 m were interpolated to 10 m. The polygon data divided 

by city/town/village is united into one. The polygons as vector data were shrunk boundaries 

in order that all the Sentinel-2 pixels contain only the paddy field. Figure 1 shows the 10m-

resolution Sentinel-2 pixels of paddy field selected by the parcel polygon data. It can be seen 

that the paddy fields are color-coded according to the ID values assigned to them. These 

processes were performed by QGIS, an open-source software with geospatial information 

data viewing, editing, and analysis capabilities.  
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Figure 1: Paddy Field Pixels in Sentinel-2 Colored by Polygon ID  

For machine learning, the 10-band images were overlaid, and the coordinates of each paddy 

pixel were identified by its assigned ID and reflectance was extracted. The IDs, coordinates, 

and reflectance of all 890314 extracted pixels were saved in a CSV file. 

Mahalanobis Distance (MD) 

MD (De Maesschalck, R., 2000) is one of the anomaly detection methods for unsupervised 

learning. It is a distance measure in multivariate space, where the correlation of each 

dimension can be expressed as a distance. Unlike Euclidean distance, it is computed using the 

inverse of the variance-covariance matrix of the data set of interest, thus taking into account 

correlations in the data. Therefore, the degree of outliers from the distribution can be 

quantified. However, when the investigated data are measured over a large number of 

variables, they can contain much redundant or correlated information.  This so-called 

multicollinearity in the data leads to a singular or nearly singular variance–covariance matrix 

that cannot be inverted. In addition, the number of objects in the data set must be greater than 

the number of variables. In this study, no dimensionality reduction was performed because 

the number of pixels is 890314 and the number of bands is 10. The formula for calculating 

MD is expressed as follows: 

𝑑 = #(𝑥 − �⃗�)!Σ"#(�⃗� − 𝜇), 

where 𝑥 is vector of paddy field pixel with 10 bands, 𝜇 is the mean vector of 𝑥, Σ is variance-

covariance matrix of size 10 × 10.  

The MD calculated for all 890314 pixels extracted from the satellite image is shown in Figure 
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2. More than 90% of the pixels have MDs less than five, and the value is larger when the 

pixel is an abnormal pixel.  

 
Figure 2: Mahalanobis Distances  

Dataset 

We set a threshold value of 10.0 for the MD to divide the pixels into normal and abnormal 

pixels. Table 2 shows the datasets used for this study. The training data consisted of 100000 

data for normal pixels only. The test data consists of 4000 normal pixels and 4002 abnormal 

pixels. The 782312 pixels not included in the dataset were not used for training. ID value 

overlap between training and test data was not taken into account. The pixel values for each 

band were normalized to zero to one. The shape of input data is 1×10, corresponding pixel by 

band, respectively. 

Table 2: Dataset 

train test 
normal normal abnormal 
100000 4000 4002 

 

To confirm the difference of normal and anomolous data, average spectral reflectance was 

calculated. Figure 3(a) shows the average reflectance calculated from 100,000 normal pixels 

used for training, and Figure 3(b) is average reflectance of 4002 anomalous pixels used for 

testing. Although the general shape of both graphs is similar, it can be seen that the 

reflectance values of anomalous pixels are generally larger. In particular, the values in bands 

6, 7, 8, 8a, 11, and 12 are larger than 0.1. 
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(a) Normal spectrum (b) Abnormal spectrum 

Figure 3: Average of the Spectrum 

Fast Anomaly Detection with Anomaly Detection (f-AnoGAN) 
The f-AnoGAN is one of the anomaly detection models and consists of three parts: a 

generator, a discriminator, and an encoder. The f-AnoGAN is an improvement on AnoGAN 

(Schlegl, T., 2017), which is time consuming due to the presence of a learning phase during 

inference. In f-AnoGAN, the search by gradient descent during the inference phase is 

eliminated to speed up the inference process. The WGAN architecture is usually used in f-

AnoGAN. Following the training for the generator and the discriminator using only normal 

pixels, the encoder is trained with optimized parameters of the generator and the 

discriminator. The WGAN uses the Wasserstein distance, a method to measure the distance 

between two probability distributions, as a loss function. The learning optimization was 

achieved by applying a gradient penalty to the loss function. The encoder training used a 

residual-aware 𝑖𝑧𝑖$ architecture of the feature space populated by the discriminator, which is 

a reliable basis for identifying anomalous images. In addition to the same data used for 

WGAN training, i.e., trained using only normal images, image statistics for real and 

reconstructed images were further computed. The loss function for the 𝑖𝑧𝑖$ encoder training 

is as follows: 

𝐿%&%!(𝑥) 	= 	
#
'
	 ∙	∥ 	𝑥	 − 	𝐺3𝐸(𝑥)5 	 ∥(	+ 	 )

'"
	 ∙	∥ 	𝑓(𝑥) 	− 	𝑓 8𝐺3𝐸(𝑥)59 	 ∥(, 

where 𝑥 is input image, 𝐺3𝐸(𝑥)5 is reconstructed image, ∥	∙	∥( is sum of squared residuals, 𝑛 

is the number of pixels in an image, 𝑓(∙) is Discriminator features of an intermediate layer, 

𝑛* is the dimensionality of the intermediate feature representation, 𝑘 is weighting factor. The 

degree of anomaly is calculated by comparing the generated image with observed image 

using test dataset which contains both of normal and abnormal images. 



                                                             Asian Conference on Remote Sensing (ACRS 2024)  

Page 9 of 15 

 

The anomaly detection of f-AnoGAN determines the anomaly score for each test data. It is 

expressed by the following equation: 

𝐴(𝑥) = 	𝐴+(𝑥) + 	𝑘 ∙ 	𝐴,(𝑥) , 

where 𝑥 is test data, 𝐴(𝑥) is anomaly score 𝐴+(𝑥) is mean squared error of real and fake 

spectrum, 𝐴,(𝑥)	is mean squared error of discriminating features between real and fake 

spectrum, 𝑘 is weight coefficient. 

We modified f-AnoGAN from image-based to spectral-based architecture. In the image-

based model, feature extraction is performed by down-sampling with convolutional layers. In 

the spectral-based model, we used the fully connected layer to generate the similar spectral 

reflectance for normal paddy field pixels. In addition, dimensionality compression was 

performed by setting the number of dimensions of the latent space to 5 in the encoder training. 

Efficient-GAN 

Efficient-GAN (Zenati, H., 2018) is another popular GAN-based architecture for anomaly 

detection. It also consists of three parts: a generator, a discriminator and an encoder, same as 

f-AnoGAN. However, Efficient-GAN employs a bidirectional GAN called BiGAN (Donahue, 

J., 2017), which simultaneously learns an encoder that maps input samples to the latent space 

along with a generator and discriminator during training. This avoids the computationally 

expensive step of recovering latent representations during testing. The generator, 

discriminator, and encoder share the same loss function, and the model is updated so that the 

encoder and generator minimize, and the discriminator maximizes. The loss functions 

𝑚𝑖𝑛-,/ 	𝑚𝑎𝑥,𝑉(𝐷, 𝐸, 𝐺), with 𝑉(𝐷, 𝐸, 𝐺) defined as follows:  

𝑉(𝐷, 𝐸, 𝐺) 	= 	𝔼0~2# 	C𝔼&~2$(∙|0)	[log𝐷(𝑥, 𝑧)]I 	+	𝔼&~2% 	 C𝔼0~2&(∙|&)	[1	 −	 log𝐷(𝑥, 𝑧)]I, 

where 𝑝7(𝑥) is the distribution over the data, 𝑝8(𝑧) is the distribution over the latent 

representation, 𝑝/(𝑧|𝑥)  and 𝑝-(𝑥|𝑧)  are the distribution induced by the encoder and 

generator respectively. An anomaly score is computed by the comparison between model-

output image generated from input image and the input image itself. Then anomaly detection 

is carried out based on this anomaly score. 

Efficient-GAN anomaly detection uses an anomaly score that measures how anomalous the 

test data is based on a convex combination of reconstruction loss and discriminator-based 

loss. The calculation formula is as follows: 

𝐴(𝑥) = 	𝛼𝐿-(𝑥) +	(1 − 𝛼)𝐿,(𝑥), 

where 𝑥  is test data, 𝐴(𝑥) is anomaly score 𝐿-(𝑥) is a reconstruction loss, 𝐿,(𝑥) is a 

discriminator-based loss, 𝛼 is Random coefficient of 0 < 𝛼 < 1.  
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Evaluation 

The ROC-AUC, which is often used in the evaluation of classification problems, is used to 

evaluate the accuracy of anomaly detection. It represents the area under the ROC curve with 

the true positive rate on the vertical axis and the false positive rate on the horizontal axis. The 

ROC curve is represented by plotting the values of the true positive rate and the false positive 

rate for different threshold values for normal and abnormal classification. In addition, the 

optimal threshold value is found based on the ROC curve, the predicted labels are generated 

at that threshold value, and the confusion matrix is computed by comparing the predicted 

labels with the actual labels. Using each element of the confusion matrix, we used accuracy, 

fit rate, reproducibility, and F1-score, which is the harmonic mean of fit rate and 

reproducibility, as evaluation indices. Each evaluation index is calculated as follows: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦	 = 	 9:	<	9=
9:	<	>:	<>=	<	9=

	, 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛	 = 	 9:
9:	<	>:

 ,  

𝑅𝑒𝑐𝑎𝑙𝑙	 = 	 9:
9:	<	>=

 , 

𝐹1	 = 	 (	×	(:@AB%C%D'	×	+ABEFF)
:@AB%C%D'	<	+ABEFF

 , 

where 𝑇𝑃 is the number of abnormal pixels predicted as abnormal (True positive), 𝐹𝑃 is the 

number of normal pixels predicted as abnormal (False positive), 𝐹𝑁  is the number of 

abnormal pixels predicted as abnormal (False negative), 𝑇𝑁 is the number of normal pixels 

predicted as normal (True negative).  

 

RESULTS AND DISCUSSION 

Model Training 

Two models were trained: f-AnoGAN and Efficient-GAN. All algorithms in this study were 

computed in Python 3.12.1 and the two GAN models were implemented using Pytorch, 

which is a machine learning library. The running environment was MacOS with an 8-core 

CPU. 

(a) Training of f-AnoGAN 

The WGAN was trained with an epoch of 300, batch size of 4000, and learning rate of 

0.0002; the encoder was trained with an epoch of 100, batch size of 000, and learning rate of 

0.0002. Figure 4(a) shows the loss scores of the generator and the discriminator in the 

WGAN training. Both of the two losses converged to zero, indicating that the learning was 

successful. Here, the loss score of the generator is less than zero, but this is usual that the loss 
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function in WGAN is less than zero. Figure 4 (b) shows the loss score of the encoder. The 

encoder was trained using the learned WGAN, and like the WGAN, the encoder's loss score 

converged to zero, indicating that it was successfully trained.  

  
(a) Losses of generator and discriminator (b) Losses of encoder 

Figure 4: Result of F-AnoGAN Training 

(b) Training of Efficient-GAN 

BiGAN training was trained with an epoch of 300, a batch size of 3000, and a learning rate of 

0.0002. Figure 5 shows the loss scores of the generator, discriminator, and encoder in BiGAN 

training. encoder and generator are combined because they have the same loss function. Both 

loss scores are rising and falling, indicating that learning is unstable. 

 
Figure 5: Result of BiGAN Training 

Comparison of Spectral Reflectance 

The average of the spectra generated in the final batch of training for each GAN was 

compared to the average of the normal spectral reflectance shown in Figure 3(a). Since a 

sigmoid function was used at the end of the generator model, the spectra were generated as if 

they were probability distributions. Figure 6(a) shows the distribution of the average of the 

spectra generated by WGAN. The higher values in bands 6, 7, 8, and 8a capture the 

characteristics of the normal spectrum shown in Figure 3(a). Figure 6(b) shows the 
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distribution of the average of the spectra reconstructed by the encoder. As in WGAN, the 

values in bands 6, 7, 8, and 8a are high. However, the values in bands 6, 7, and 8 are lower 

and the values in band 8a are reconstructed higher. Figure 6(c) shows the distribution of the 

average of the spectra generated by BiGAN. The values in Band 4 are very high, while those 

in Bands 6 and 8a are slightly lower.  

   
(a) Spectrum generated by 

WGAN 

(b) Spectrum reconstructed 

by the encoder 

(C) Spectrum generated by 

BiGAN 

Figure 6: Comparison of Spectral Reflectance 

Anomaly Detection 

Figure 7(a) shows the distribution of anomaly scores for test data calculated by anomaly 

detection using f-AnoGAN. The vertical axis of the graph is in logarithmic scale for clarity. 

Anomaly scores range from approximately 0.001 to 1.3, indicating a clear separation between 

abnormal and normal. Figure 7(b) shows the ROC curve. The ROC-AUC score was as high 

as 0.954. Figure 7(c) shows a clear visualization of the confusion matrix. Normal pixels in the 

test data were often predicted to be abnormal. It is thought that this is because normal pixels 

near the MD threshold were predicted to be anomalous pixels. 

   

(a) distribution of anomaly 

scores 

(b) ROC curve (c) confusion matrix 

Figure 7: Result of F-AnoGAN 

Figure 8(a) shows the distribution of anomaly scores for test data calculated by anomaly 

detection using Efficient-GAN. The range of anomaly scores is approximately 1.0 to 4.5, 

indicating a clear separation between normal and abnormal. Figure 8(b) shows the ROC 

curve. The ROC-AUC score was 0.970, higher than f-AnoGAN. Figure 8(c) shows a clear 
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visualization of the confusion matrix. As with f-AnoGAN, normal pixels in the test data were 

often predicted as abnormal pixels. 

Table 3 shows the values of Accuracy, Precision, Recall, and F-1 scores for f-AnoGAN and 

Efficient-GAN calculated from the confusion matrix. Both models have low Precision and 

high Recall. We can say that two models do not miss anomalous pixels. 

  
 

(a) distribution of anomaly 

scores 

(b) ROC curve (c) confusion matrix 

Figure 8: Result of Efficient-GAN 

Table 3: Evaluation 

 Accuracy Precision Recall F-1 score 

f-AnoGAN 0.792 0.715 0.974 0.824 

Efficient-GAN 0.783 0.698 0.995 0.821 

 
Correlation between MD and Anomaly Score 

We determined the correlation coefficients between the anomaly scores of the test data 

calculated by GAN and MD. Figure 9(a) shows the scatter plots of the anomaly scores 

calculated by f-AnoGAN and MD. The overall correlation coefficient was 0.633, indicating a 

correlation. However, when the correlation coefficient was narrowed down to only the 

abnormal pixels, the correlation coefficient was 0.490, which did not show much correlation. 

Figure 9(b) shows the scatter plot of anomaly scores calculated by Efficient-GAN and MD. 

The overall correlation coefficient was 0.682, indicating a correlation. However, it was also 

low for anomaly pixels, with a correlation coefficient of 0.339. Overall, MD and GAN results 

are positively correlated, with a reasonably high correlation coefficient. The separation of 

abnormal from normal in MD is the result of successful learning. Both scatter plots show 

upward and sideways extending distributions. GAN may detect anomalies from a different 

perspective than MD. 
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(a) f-AnoGAN (b) Efficient-GAN 

Figure 9: Comparison of Correlation Coefficient 

 

CONCLUSION 

In this study, the anomaly detection by GAN was verified for the paddy field using satellite 

data. A GAN modified from an image-based to a spectral-based architecture was trained on 

data divided into normal and abnormal pixels according to MD thresholds. The realistic 

spectral reflectance could be generated using fully connected layer, and anomalous pixels 

could be detected by GAN. The ROC-AUC of anomaly detection was 95.5% for f-AnoGAN 

and 97.1% for Efficient-GAN, which was comparable to classification by MD. However, 

there was no significant correlation between anomaly scores and MD.  

The main problem is that we do not know whether a pixel is abnormal or not, from an 

agricultural point of view, since it is divided into normal and abnormal pixels according to its 

numerical value. It is necessary to visually check the pixels that are determined to be 

abnormal. In the future, we intend to clarify what kind of problems are occurring in paddy 

fields according to the degree of anomaly.  
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