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ABSTRACT: Mangrove ecosystems are valuable for reducing climate change because they can 

absorb and store carbon dioxide (CO2). Their ability to absorb CO2 at a rate three times higher 

than terrestrial forests and tropical rainforests highlights their importance in our efforts to combat 

rising greenhouse gas emissions. Mangrove forests along Trusan Kinabatangan Sabah, Malaysia, 

are incredibly valuable ecosystems with high potential for carbon storage, coastal buffer zones, 

tourism, and the fishing industry. This study focuses on the carbon dioxide sequestration 

capabilities of the mangrove forests in Trusan Kinabatangan, Sabah, Malaysia, utilizing remote 

sensing technologies. Forest cover mapping is effectively facilitated through the implementation of 

remote sensing techniques using high-resolution images, advanced image processing, and 

geographic information systems (GIS). In addition, the study introduces a method for calculating 

CO2 absorption in forest ecosystems using Landsat satellite imagery. The approach involves the 

classification of land cover to identify forested areas and the application of vegetation indices, such 

as the Normalized Difference Vegetation Index (NDVI), to estimate aboveground biomass. Biomass 

estimates are converted to carbon stock using established allometric equations, and changes in 

carbon stock over time are analyzed to determine the rate of CO2 sequestration. A comparison has 

been made of the estimated CO2 absorption rates for the years 2018, 2020, and 2023. The study 

findings for 2018 indicate that CO₂ sequestration rate of Trusan Kinabatangan, Sabah, derived 

from remote sensing data, is approximately 98.32 tons of carbon per hectare in 2018, 112.30 tons 

of carbon per hectare in 2020 and 124.73 tons of carbon per hectare in 2023. Comparatively, from 

2018 to 2023, biomass accumulation significantly increases by 26.41 tons of carbon per hectare or 

27% in a similar area. These results highlight significant variations or similarities in biomass 

accumulation and carbon sequestration rates. 
 

Keywords: Mangrove, Carbon Dioxide (CO2), Geographical Information Systems (GIS), 
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 Introduction 
 

Among the planet's most productive and biologically varied ecosystems are mangrove forests. They 

are essential to the global carbon cycle because of their extraordinary capacity to retain and store 

carbon dioxide (CO2) both above and below ground. According to certain studies, these special 

coastal ecosystems may sequester carbon at rates up to four times larger than terrestrial forests, 

demonstrating their exceptional efficiency in doing so (Donato et al., 2011). Because of this, 

mangroves play vital role and significant for reducing the effects of climate change, especially in 

tropical and subtropical area. Mangrove forests offer variety of ecosystem services, such as carbon 

sequestration, coastal protection, and as habitat for a wide range of wildlife which may be found at 

Trusan Kinabatangan, Sabah, Malaysia. Despite their significance, these forests are in danger due to 

land conversion, deforestation, human activity, and climate change. As a result, it is critical to monitor 

and manage them using precise and effective approaches.  

 

The most accurate approach to gather biomass data, according to Lu (2006), is by field data collection, 

yet this approach is costly, labour-intensive, time-consuming, and challenging to carry out in large, 

isolated areas. As a result, another way to collect this data involves using remote sensing technologies 

and an aerial approach. In addition, to mapping the geographical extent and density of mangrove 

forests which are crucial for determining total biomass remote sensing provides strong tools for 

estimating CO2 sequestration in mangrove areas and providing vital information for conservation and 

climate mitigation initiatives Researchers can use satellite imaging and other remote sensing data to 

evaluate the spatial extent, structure, health, and carbon storing capacity of forests with great 

precision (Fatoyinbo et al., 2008).  

 

High-resolution data that remote sensing provides can be used to assess the size, composition, and 

condition of mangrove ecosystems. Inaccessible landscapes may now be analyzed thanks to remote 

sensing technology, which provides vital information for improving and informing conservation and 

management plans. Furthermore, the amalgamation of various remote sensing technologies allows 

researchers to attain exceptionally comprehensive and precise evaluations of mangrove carbon stores, 

and precisely tracking their temporal fluctuations. Mangrove ecosystems are crucial in halting climate 

change because they may store up to four times as much carbon per hectare as tropical forests. 

Satellite images and LiDAR are two handy remote sensing tools for calculating above-ground 

biomass and calculating the carbon stores below the surface in these regions. With the use of these 

technologies, deforestation, degradation, and other changes may be continuously monitored, enabling 

prompt responses to protect these ecosystems rich in carbon. Satellite imaging time-series analysis is 

helpful in tracking changes in mangrove cover and identifying regions undergoing restoration or 

deterioration. With remote sensing methods, this study seeks to determine the mangrove forests 



Asian Conference on Remote Sensing (ACRS 2024) 

 

capacity for sequestering CO2 in Trusan Kinabatangan, Sabah, Malaysia. 

 

Literature Review 

 
 

Mangrove forests, referred to as "blue carbon" are among the planet's most productive ecosystems 

because of their great ability to sequester carbon. Mangrove forests can absorb carbon dioxide (CO₂) 

from the atmosphere and store it in their biomass and sediment which significantly contributes to the 

mitigation of climate change. Moreover, their wet and anoxic soils slow down decomposition 

processes and improve long-term carbon storage; mangroves are thought to store up to four times more 

carbon per unit area than terrestrial forests (Alongi, 2014).  

 

Mangrove forests are known for their capacity to sequester carbon because of their adaptation to saline 

environments and geographical location. Nevertheless, it is difficult to precisely estimate their capacity 

to store carbon at both local and global scales locally and globally. One potential method for mapping, 

monitoring, and calculating carbon sequestration in these ecosystems is by using remote sensing 

technologies. Through the storage of organic carbon in both above-ground biomass (tree trunks, 

branches, and leaves) and below-ground biomass (roots and soil), mangroves considerably contribute 

to CO2 sequestration. Mangroves can store between 900 and 1,500 tons of carbon per hectare, 

according to studies (Donato et al., 2011). Their capacity to store carbon in submerged soils, where 

organic matter is preserved for generations, accounts for their great sequestration potential.  

  

Furthermore, preserving and monitoring these ecosystems is crucial since the deterioration and 

deforestation of mangrove forests may cause the released carbon to return to the atmosphere. Remote 

sensing technologies are now essential for monitoring changes in mangrove cover and determining the 

dynamics of their carbon supply. The evaluation of mangrove ecosystems has significantly benefited 

from the use of remote sensing methods such as satellite images, aerial photography, LiDAR (Light 

Detection and Ranging), and UAV (Unmanned Aerial Vehicle). These instruments enable extensive, 

long-term mangrove forest monitoring and offer crucial information about these ecosystems’ biomass 

and carbon storage potential. Mapping and monitoring mangrove forests can be done effectively and 

economically with the use of satellite-based remote sensing. Mangrove forest cover mapping and 

biomass calculation have been accomplished through various studies by using multiple satellite 

missions, such as Sentinel, MODIS, and Landsat. Vegetation indices like the Enhanced Vegetation 

Index (EVI) and Normalized Difference Vegetation Index (NDVI) are frequently used to interpret 

mangrove biomass and carbon stocks (Giri, 2016).  
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While remote sensing offers many benefits, there are several obstacles to precisely quantifying 

mangrove carbon stores. Differentiating between mangrove species is a major challenge since they 

may have differing capacities for sequestering carbon. In addition, a significant amount of the total 

carbon stored in mangroves is represented by below-ground biomass, which is frequently difficult for 

satellite data to capture. Field-based measurements are required to estimate below-ground carbon 

stocks and to validate and supplement data obtained from remote sensing (Atwood et al., 2017). 

Ground-truthing initiatives guarantee that carbon stock estimates accurately reflect the potential for 

mangrove ecosystems to sequester carbon and assist in enhancing the accuracy of remote sensing 

models. Besides, the creation of long-term monitoring programs employing cutting-edge satellite 

platforms will offer vital information about how human activity and climate change affect mangrove 

carbon reserves over time. 

Methodology 

2.1 Study Region 

 
Mangrove forests are vital to coastal ecosystems, offering habitat to numerous species and shielding 

coastlines from erosion. This study, covering 510 hectares in the Trusan Kinabatangan Forest 

Reserve area of Sabah, Malaysia, underscores the significance of these forests for biodiversity and 

ecological balance in the region. The study extends from 5° 51' 1.8396" to 5° 35' 0.0852" latitude 

and 118° 13' 47.6688" to 118° 37' 52.3164" longitude. This area is predominantly covered by 
 

 

mangrove trees, which play a crucial role in coastal protection and carbon sequestration. However, 

it also experiences various development activities, including the expansion of villages, which often 

leads to habitat loss. Additionally, tourism ventures can put pressure on these ecosystems through 

increased foot traffic and infrastructure development. Aquaculture operations, such as shrimp 

farming, further impact mangrove areas by altering water quality and land use. These factors 

combined can significantly affect the health and sustainability of mangrove ecosystems. 

 

 

Figure 1: Study Area 
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2.2 Image Acquisition 

 
The acquired data was from Landsat 8, which was launched from Vandenberg Air Force Base, 

California on February 11, 2013 (U.S. Department of the Interior, 2022). The satellite consists of 

Operational Land Imager (OLI) and Thermal Infrared Sensor (TIRS). Level 2 imageries were 

downloaded from the https://earthexplorer.usgs.gov/ website. 

 

Table 1: Landsat 8 bands 
 

Band Name  Wavelengt

h 

Range 

(μm) 

Resolution 

(m)  

Band 1 Coastal 

Aerosol  

0.43 - 0.45 30 

Band 2 Blue 0.45 - 0.51 30 

Band 3 Green 0.53 - 0.59 30 

Band 4 Red  0.64 - 0.67 30 

Band 5 Near-

Infrared 

0.85 - 0.88 30 

Band 6 SWIR 1 1.57 – 1.65 30 

Band 7 SWIR 2 2.11 – 2.29 30 

Band 8 

Panchromatic 

0.50 - 0.68 15 

Band 9 Cirrus 1.36 – 1.38 30 

Band 10 TIRS  10.6 – 11.19 100 

Band 10 TIRS  11.5 – 12.51 100 
 

 

2.3 REMOTE SENSING DATA 

 
 

Multiple date Landsat 8 OLI imageries were used. The Landsat 8 satellite is the latest generation of 

terrestrial remote sensing satellites. Its sensors have been significantly improved in terms of imaging 

mode, band settings and signal-to-noise ratio. Satellite data from 2018 to 2023 with different seasons 

were collected and processed. Landsat 8 has better sensors with more bands for detailed images. It 

offers improved accuracy and fewer data gaps. The new bands include coastal and cirrus cloud 

measurements. It also has better calibration for higher quality data. High-resolution imagery and 

advanced sensors provide valuable insights into environmental changes and human activities, 

supporting both scientific research and practical applications in natural resource management. 

 

 

 

 

 

https://earthexplorer.usgs.gov/


Asian Conference on Remote Sensing (ACRS 2024) 

 

 
Table 2: Summary of the satellite remote sensing data used in this study 

 

Type of Data Image Date 

Landsat 8 Operational 

Land Imager (OLI) 

16 June 2023 

6 November 2020 

29 August 2018 

2.4 RADIOMETRIC CORRECTION 

 
Radiometric correction in Landsat 8 is essential for improving the accuracy of satellite imagery. 

The process adjusts for various factors that can distort the recorded data, ensuring that the brightness 

values in the images reflect the actual conditions on Earth's surface. The correction process begins 

with calibration, where raw digital numbers (DNs) from the sensor are converted into physical units 

like radiance or reflectance. This is done using calibration coefficients specific to Landsat 8's 

sensors. Next is atmospheric correction, which removes the effects of atmospheric gases and 
 

particles that can distort the measurements, ensuring that the data accurately represents the surface 

characteristics. Lastly, sensor correction addresses any sensor-specific issues, such as systematic 

errors or drift, to maintain consistency across images and over time. Correction to Top of 

Atmosphere changed the pixel values of the image into the reflectance values by normalizing the 

angle and intensity of solar energy, while the DOS correction intended to remove atmospheric path 

radiance. DOS correction assumes that there is a pixel containing 0% reflectance. 

 
TOA (Top of Atmospheric) spectral radiance was calculated using the following equation. 

TOA (L) = ML * Qcal + AL (1) 

where: 

ML = Band-specific multiplicative rescaling factor from the metadata 

Qcal  = Quantized and calibrated standard product pixel values (DN) 

AL = Band-specific additive rescaling factor from the metadata 

 
Reflective band DN’s can be converted to TOA reflectance using the rescaling coefficients in the 

MTL file: 

ρλ′=MρQcal+Aρ (2) 

where: 

ρλ' = TOA planetary reflectance, without correction for solar angle. Note that ρλ' does not 

contain a correction for the sun angle. 

Mρ = Band-specific multiplicative rescaling factor from the metadata 

(REFLECTANCE_MULT_BAND_x, where x is the band number) 

Aρ = Band-specific additive rescaling factor from the metadata 
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(REFLECTANCE_ADD_BAND_x, where x is the band number) 

Qcal = Quantized and calibrated standard product pixel values (DN) 
 

TOA reflectance with a correction for the sun angle is then: 

Ρλ =  ρλ′ =  ρλ′ 

cos(θSZ)  Sin(θSE) 

(3) 

where: 

ρλ = TOA planetary reflectance 

θSE = Local sun elevation angle. The scene center sun elevation angle in degrees is provided 

in the metadata 

 
 

(SUN_ELEVATION). 

θSZ = Local solar zenith angle; θSZ = 90° - θSE 

 

 

 
2.5 CLASSIFICATION 

 
 

2.5.1 Land Cover 

Landsat imagery from the years 2018, 2020, and 2023 was analyzed and classified into three 

primary land cover categories namely Mangrove, Urban, and Waterbody using the Support 

Vector Machine (SVM) classifier. 

The Support Vector Machine is a supervised machine learning algorithm used for classification 

and regression tasks. In this context, SVM was employed to distinguish between different land 

cover types based on the spectral features extracted from the Landsat images. 

 

2.5.2 Vegetation Index 

 
 

NDVI image was generated using the following equation. 

NDVI = (Band 5 – Band 4) / (Band 5 + Band 4)      (4) 

 
 

The proportion of vegetation (Pv) was then calculated. 

Pv = Square ((NDVI – NDVImin)/(NDVImax – NDVImin))     (5) 

 
 

Emissivity (ε) was calculated using the following equation. 

ε = 0.004 * Pv + 0.986      (6) 

where: 
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the value of 0.986 corresponds to a correction value of the equation. 

 
 

Vegetation Indices (VI) 

The Vegetation Indices were calculated in ArcGIS using the formula as shown below: 
 

 
NDVI = [NIR-RED] / [NIR+RED]   (7) 

 
 

DBI  = [SWIR-NIR] / [SWIR+NIR] (8) 

MNDWI  = [Green –SWIR] / [Green + SWIR] (9) 
 

 

2.5.3 Above Ground Biomass (AGB) Estimation 

Estimation of above the ground surface biomass value was done using the approach of NDVI result 

of equation correlation with Above Ground Biomass (AGB) of mangrove that is equal to 0.787 by 

Jha et al. (2015) as follows: 

 
AGB= 305.9 * NDVI 4.864 (10) 

 

NDVI = the value of Vegetation Index, AGB = the Above Ground Biomass Value (ton ha-1). 

 

2.5.4 Below Ground Biomass (BGB) Estimation 

 
 

The estimated value of Below Ground Biomass (BGB) is obtained from the estimation of AGB 

which is formulated using the equation compiled by Cairns, et al (1997) as follows: 

 
BGB= exp (-1.0587+0.8836 * Ln (AGB) (11) 

 
 

AGB = the value of Above Ground Biomass (ton ha-1), BGB = the Below Ground Biomass value 

(ton ha-1). 

 
2.5.5 Total Accumulated Biomass (TAC) 

 
 

Total Accumulation Biomass (TAB) is formulated by using: 

 
 

TAB = AGB + BGB (12) 

 
 

TAB = Total Accumulated Biomass (ton ha-1). 
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2.5.6 Total Carbon Stock (TCS) calculation 

 
 

Calculation of total carbon stock based on Westlake (1963) using the following formula: 
 

 

TCS = TAB * % C organic (13) 

 
 

TCS = the value of Total Carbon Stock (ton C ha1), TAB = the value of Total Accumulated 

Biomass (ton ha1), %C organic = the percentage value of carbon stock (0.47) 

 
2.5.7 Amount of CO2 Sequestration (ACS) Calculation 

 
 

IPCC (2001) suggests converting carbon stock from biomass to carbon dioxide uptake using the 

following conversion 

ACS = 3.67 * TCS (14) 

ACS = the Amount of CO2 Sequestration (ton C ha1), TCS = the value of Total Carbon Stock 

 (ton C ha1). 

 
2.6 RESEARCH FLOW CHART 

 

Figure 3: Research flowchart 
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3 RESULTS AND DISCUSSION 

 
 

3.1 MULTI-TEMPORAL LAND COVER CLASSIFICATION 

 
Landsat 8 OLI images, acquired on various dates in 2018, 2020, and 2023 (Figure 4), were processed 

and classified into three distinct land cover types: Mangrove, Urban, and Waterbody. This 

classification was achieved using spectral data from the imagery to differentiate between the land 

cover categories. The resulting classified maps, which show the distribution and extent of each land 

cover type, are presented in Figure 5. From the results of accuracy assessment, overall accuracies 

for the Landsat 8 OLI imagery were assessed for the years 2018, 2020, and 2023. The accuracy for 

2018 was 96.9%, indicating a high level of precision in categorizing the land cover types. In 2020, 

the accuracy was 96.4%, which still reflects strong classification performance, though slightly 

lower than 2018. For 2023, the accuracy increased to 97.7%, demonstrating the effectiveness and 

consistency of the classification process over time. These accuracy metrics highlight the robustness 

and reliability of the land cover classification in distinguishing between Mangrove, Urban, and 

Waterbody types across the different years. Meanwhile the kappa statistics values for each year are 

0.87, 0.83, and 0.84. The classification for this area mostly indicates good classification 

performance, with Kappa values more than 0.80 (based on the findings from Lillesand et al., 2004; 

Jensen 2005). This shown on the Table 3-5 below. The land cover in the area primarily consists of 

mangrove forest. There has been a change in land cover from mangrove forest to urban 

development in the selected area. 

 

 

29 August 2018  6 November 2020 16 June 2023 

Figure 4: Multiple date Landsat 8 OLI imageries 
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2018 2020 2023 

Figure 5: Land Cover Map 

 
 

Table 3: Landcover classes 2018 - 2023 
 

Land Cover / 

Year 

Area (ha) 

2018 2020 2023 

Mangrove 208.0 217.0 219.0 

Urban 200.0 230.0 260.0 

Water body 13.0 13.0 13.0 

Cloud 14.0 13.0 13.0 

 

 

Table 4: Confusion Matrix (2018) 
 

Year: 2018, Overall Accuracy: 96.9 %, Kappa Statistics: 0.865 

Land Cover Mangrove Urban Water body Total 
User 

Accuracy 

Mangrove 140.000 3.000 0.000 143.000 0.979 

Urban 2.000 8.000 0.000 10.000 0.800 

Water body 0.000 0.000 10.000 10.000 1.000 

Total 142.000 11.000 10.000 163.000 0.000 

Producer Accuracy 0.986 0.727 1.000 0.000 0.969 

 

 

Table 5: Confusion Matrix (2020) 
 

Year: 2020, Overall Accuracy: 96.4 %, Kappa Statistics: 0.831 

Land Cover Mangrove Urban Water body Total 
User 

Accuracy 

Mangrove 143.000 2.000 0.000 145.000 0.986 

Urban 3.000 6.000 1.000 10.000 0.600 

Water body 0.000 0.000 10.000 10.000 1.000 

Total 146.000 8.000 11.000 165.000 0.000 

Producer Accuracy 0.979 0.750 0.909 0.000 0.964 
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Table 6: Confusion Matrix (2023) 
 

Year: 2023, Overall Accuracy : 97.7%, Kappa Statistics : 0.835 

Land Cover Mangrove Urban Water body Total 
User 

Accuracy 

Mangrove 280.000 6.000 0.000 286.000 0.979 

Urban 1.000 9.000 0.000 10.000 0.900 

Water body 0.000 0.000 10.000 10.000 1.000 

Total 281.000 15.000 10.000 306.000 0.000 

Producer Accuracy 0.996 0.600 1.000 0.000 0.977 

 
The Normalized Difference Built-up Index (NDBI) was derived from Landsat 8 OLI imagery by 

utilizing the specific spectral bands corresponding to the Near Infrared (NIR) and Short-Wave 

Infrared (SWIR) wavelength regions. Specifically, the NIR band (Band 5) and the SWIR band 

(Band 6) were used to calculate the NDBI, which is an index designed to highlight built-up areas 

by measuring the difference between the reflectance of these two bands. This index is particularly 

useful for identifying urbanized regions, as built-up areas tend to reflect more in the SWIR band 

compared to the NIR band. The resulting NDBI values help in distinguishing urban areas from other 

land cover types, contributing to urban planning and land use studies. NDBI values will be ranged 

from -1 to 1, where NDBI value closer to 1 indicates a high building density condition, while a 

negative NDBI value means that the area is classified as a non-built-up area (Naserikia et al., 2019). 

This relationship is used for finding the area of built-up area class. 

 

2018 2020 2023 

Figure 6: Normalized Difference Built-up Index (NDBI) Classification maps 

 
 

The Modified Normalized Difference Water Index (MNDWI) was applied to Landsat 8 OLI imagery 

to accurately identify water bodies, including areas where vegetation, such as crops, is submerged 

under water. The MNDWI leverages specific spectral bands from the Landsat 8 OLI sensor, 

particularly the green band (Band 3) and the Short-Wave Infrared (SWIR) band (Band 6), 
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to enhance the detection of water features. By highlighting water bodies and suppressing the 

reflectance of built-up and vegetation areas, the MNDWI provides a clear distinction of water- 

covered regions, making it particularly useful for identifying and monitoring flooded agricultural 

fields and other water-related land cover. The visual representation of the identified water body 

areas, as determined by the MNDWI, is shown in Figure 7, illustrating the effectiveness of this index 

in mapping submerged vegetation and water bodies. 

 
 

2018 2020 2023 

Figure 7: Modified normalized difference water index (MNDWI) Classification maps 

 
 

The Normalized Difference Vegetation Index (NDVI) technique is used to determine vegetation 

index and changes in plant coverage, such as shifts in tree canopies, leaf area index, and overall 

biomass using specific band combinations of remote sensing data. In the field of remote sensing, 

it's essential to understand that the Earth's surface reflects different bands. When vegetation is 

actively carrying out photosynthesis, it absorbs most of the red band (Near Infrared Reflectance). 

By analyzing the reflectance of the red and infrared bands in a multispectral image, can effectively 

observe and measure the density of green growth in vegetation. Understanding these principles is 

crucial for accurate remote sensing analysis (M. A. Ganie,2016). This method allows interpretation 

of land resources through the computation of NDVI for land cover classification is shown in Figure 

8. In this analysis, we discovered that the mangrove forest covers an area of approximately 219 

hectares within the research area. Mangrove forest has been identified using NDVI for the years 

2018,2020 and 2023. This index was selected by considering the capacity gained from estimating 

carbon stocks in mangrove forests. Among the various vegetation indices, NDVI is widely used for 

investigating carbon dynamics. Less dense vegetation such as shrubs or less mature mangroves has 

moderate NDVI values, approximately 0.2 to 0.5, while high NDVI values approximately 0.6 to 

0.9, correspond to dense vegetation found in mangrove forests during the peak growth phase. 

Therefore, a higher NDVI indicates a greater amount of green vegetation on the ground. The NDVI 

of the non-vegetation class is generally lower than that of the vegetation class (M. A. Ganie,2016). 
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The NDVI value from 2018 to 2023 indicates that the improved vegetation health and increased in 

vegetation density with higher biomass per unit area.  

 

 

2018 2020 2023 

Figure 8: Normalized Difference Vegetation Index (NDVI) Classification maps 

 
 

Tree biomass is divided into Above Ground Biomass (AGB) and Below Ground Biomass (BGB). 

AGB includes the trunk, branches, leaves, and reproductive structures, playing a key role in 

photosynthesis and carbon storage. BGB consists of the root system, which is crucial for structural 

support and nutrient absorption. While AGB is often more visible, BGB typically makes up 20-30% 

of total biomass and is vital for the tree's health and stability. The balance between AGB and BGB 

is essential for a tree's ability to adapt to environmental changes, with implications for ecological 

research and forest management. 

 

Tables 7 through Table 9 present the Above Ground Biomass (AGB) values, demonstrating a 

progressive increase over the years. In 2018, the AGB was recorded at 56.45 ± 20.87 tons per 

hectare. By 2020, this value increased to 64.58 ± 23.09 tons per hectare, reflecting an upward trend 

in biomass accumulation. In 2023, the AGB further increased to 71.80 ± 25.67 tons per hectare. 

These figures indicate a consistent rise in AGB over time, with the associated standard deviations 

highlighting the variability in biomass distribution across the measured areas. Determining the value 

of Above Ground Biomass (AGB) is a crucial step in planning for the protection and optimal 

management of natural mangrove resources, as emphasized by Medeiros and Sampaio (2008). 

Accurate measurement of AGB helps in assessing the health and productivity of mangrove 

ecosystems, guiding conservation efforts, and ensuring sustainable use of these vital coastal 

resources. 
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Differences in Above Ground Biomass (AGB) and Below Ground Biomass (BGB) values are 

observed among mangrove species due to several influencing factors. These include geographical 

location, which affects environmental conditions such as salinity and soil type; tree density, which 

impacts competition for resources; and ecological factors, such as species-specific growth patterns 

and adaptations. These variations highlight the importance of considering these factors in the 

management and conservation of mangrove ecosystems. 

 

Total accumulated biomass (TAB) refers to the total amount of biomass both above and below the 

soil surface (Amandagi,2017). In Trusan Kinabatangan, Sabah, the Total Above Biomass (TAB) was 

recorded at 57.00 ± 20.82 tons per hectare in 2018. By 2020, this value had increased to 65.10 ± 

23.02 tons per hectare. By 2023, the TAB further rose to 72.31 ± 25.58 tons per hectare. This upward 

trend in TAB indicates a significant increase in carbon stock over the years, reflecting changes in 

biomass accumulation within the mangrove ecosystem of the region. When the BGB to AGB ratio 

is higher, it indicates substantial root growth compared to trunk growth (Amandangi,2017). Plant 

biomass is directly linked to photosynthesis, as biomass increases when plants absorb CO2 and 

convert it into organic compounds through photosynthesis. The biomass in each part of the plant 

increases in proportion to the tree’s diameter. The capacity of trees to sequester carbon from the air 

influenced by both tree diameter and tree height (Fu W,2011). 

 
The quantity of carbon can be estimated by converting biomass to carbon, using the IPCC default 

carbon fraction of 0.47. Belowground tree root biomass is commonly estimated as a ratio of the 

aboveground tree biomass (Sarah,2016). In 2018, the total carbon stock (TCS) estimated from 

remote sensing measurements in the study area was 26.79 ± 9.79 tons per hectare. By 2020, this 

figure had risen to 30.60 ± 10.82 tons per hectare, indicating an increase in carbon storage over a 

two-year period. This upward trend continued, with the TCS reaching 33.99 ± 12.02 tons per hectare 

by 2023. 

 

This progressive increase in TCS reflects a cumulative rise in carbon sequestration, suggesting 

enhanced biomass accumulation and improved carbon retention within the ecosystem over the 

studied years. The increasing carbon stock values underscore the effectiveness of the area in 

capturing and storing atmospheric carbon, which is crucial for climate change mitigation efforts. The 

variability in the TCS values, as indicated by the standard deviations, highlights the spatial 

heterogeneity and potential measurement uncertainties in the remote sensing data. There is a 

difference in carbon stock value between natural mangrove forests and replantation mangroves in 

ex-ponds. It was found that carbon stock produced by natural mangroves is higher than replantation 
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mangroves in ex-ponds (Sidik et al. 2014). From this study, the data revealed a progressive annual 

increase in carbon stock estimates: from 26.79 ± 9.79 tons per hectare in 2018, to 30.60 ± 10.82 

tons per hectare in 2020, and further to 33.99 ± 12.02 tons per hectare by 2023. This consistent 

upward trend demonstrates the effectiveness of the remote sensing methodology in accurately 

capturing the accumulation of carbon in mangrove ecosystems. The increasing carbon stock values 

reflect enhanced carbon sequestration and storage capacity of the mangroves, validating the remote 

sensing approach as a reliable tool for monitoring and assessing long-term changes in carbon stocks. 

 

The study findings indicate that the variation in carbon stock in Trusan Kinabatangan, Sabah, is 

primarily influenced by the growth dynamics and age of the mangrove trees. As the trees mature, 

their biomass accumulates, which leads to an increase in carbon sequestration capacity. This growth 

trajectory results in a progressive rise in carbon stock values over the years. The correlation between 

tree age, biomass accumulation, and carbon stock emphasizes the critical role of mangrove tree 

growth in determining overall carbon storage. Understanding these dynamics is essential for 

accurately assessing carbon sequestration potential and implementing effective management 

strategies for mangrove conservation and climate change mitigation. Approximately 70% of the 

variability in carbon stock is attributed to the age of the trees (Estrada and Soares, 2017), as well as 

the species, management forest, and climate (Kairo et al., 2008). 

 

Scientific studies reveal that the Amount of CO2 Sequestration (ACS) in Trusan Kinabatangan, 

Sabah, increased from 98.32 ± 35.92 tons per hectare in 2018 to 124.73 ± 44.12 tons per hectare in 

2023. This result indicates a significant enhancement in the carbon sequestration capacity of the 

mangrove ecosystem. The rise in ACS values over time is attributed to the ongoing growth and 

biomass accumulation of mangrove trees, which effectively sequester more CO2. The variation in 

ACS estimates, reflected in the standard deviations, accounts for spatial heterogeneity and potential 

measurement errors inherent in remote sensing data. These results underscore the utility of remote 

sensing technologies in accurately assessing temporal changes in carbon sequestration and 

emphasize the critical role of mangrove forests in global carbon cycling and climate change 

mitigation. 
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Table 7: Average Value of NDVI, AGB, BGB, TAB, TCS and ACS 2018 
 

Year 2018 

Average Value 
Statistics (t Ha-1) 

Mean±SD Max Min 

NDVI 0.68±0.12 0.86 -0.88 

AGB 56.45±20.87 144.02 0 

BGB 0.55±2.28 546.25 0.42 

TAB 57.00±20.82 546.25 1.52 

TCS 26.79±9.79 256.02 0.72 

ACS 98.32±35.92 942.23 2.63 

 

Table 8: Average Value of NDVI, AGB, BGB, TAB, TCS and ACS 2020 
 

Year 2020 

Average Value 
Statistics (t Ha-1) 

Mean±SD Max Min 

NDVI 0.71±0.12 0.85 -1.01 

AGB 64.58±23.09 136.73 0 

BGB 0.52±1.72 561.55 0.42 

TAB 65.10±23.02 561.55 1.52 

TCS 30.60±10.82 263.93 0.72 

ACS 112.30±39.70 968.62 2.63 

 

Table 9: Average Value of NDVI, AGB, BGB, TAB, TCS and ACS 2023 
 

Year 2023 

Average Value 
Statistics (t Ha-1) 

Mean±SD Max Min 

NDVI 0.72±0.13 0.87 -1.03 

AGB 71.80±25.67 156.62 0 

BGB 0.52±1.56 539.54 0.41 

TAB 72.31±25.58 539.54 1.52 

TCS 33.99±12.02 253.58 0.72 

ACS 124.73±44.12 930.65 2.63 

 
Figure 9 provides a detailed overview of the distribution and annual variations of Total Above 

Biomass (TAB), Total Carbon Stock (TCS), and Amount of CO2 Sequestration (ACS) in Trusan 

Kinabatangan, Sabah for the years 2018, 2020, and 2023. The data demonstrate that the values of 

TAB, TCS, and ACS fluctuate annually, influenced by the different types of mangroves, including 

those that are naturally occurring and those that have been restored. Specifically, in natural 

mangrove forests, the average values of TAB, TCS, and ACS exhibit a consistent increase each 
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year. This trend is primarily due to the progressive growth and maturation of the mangrove trees, 

leading to greater biomass accumulation and enhanced carbon sequestration over time. 

 

The Normalized Difference Vegetation Index (NDVI) values calculated for each pixel in satellite 

imagery can be used to estimate carbon stock in the area. NDVI, which measures vegetation density 

and health by comparing the reflectance in the red and near-infrared bands, provides an indication 

of vegetation cover and biomass. Variability in NDVI values can lead to diverse outcomes in carbon 

stock estimates due to differences in vegetation type, growth stages, and environmental conditions 

such as soil moisture and nutrient availability. Accurate estimation of carbon stock using NDVI 

requires considering these factors, as they influence the relationship between NDVI values and 

actual carbon sequestration. The relationship between NDVI and Above Ground Biomass (AGB) 

exhibits complexities that can influence biomass estimation. While linear regression typically shows 

higher correlation coefficients between NDVI and AGB, it may not fully capture the true distribution 

of biomass, particularly at NDVI values near zero. At low NDVI values, the linear model may 

inadequately represent the non-linear or saturated relationships between vegetation density and 

biomass, potentially leading to less accurate biomass estimates. 

 

To ensure accurate estimation of carbon stock in mangrove environments using remote sensing 

methods, conducting field testing is essential. Field measurements provide ground-truth data that 

validate and calibrate remote sensing results, addressing potential discrepancies caused by variations 

in vegetation types, soil conditions, and sensor limitations. This ground-truthing process helps 

improve the reliability and precision of carbon stock estimates derived from remote sensing 

technologies. While the NDVI method may not be the optimal choice, it demonstrates relatively 

consistent accuracy with various levels of radiometric correction (Wicaksono et al., 2011). 

Additionally, it is crucial to utilize high-resolution image data to effectively assess the condition 

and dynamics of mangroves (Rodriguez and Feller, 2004), classify tree species based on their 

reflectance value (Wang et al., 2004; Dahdouh-Guebas et al., 2005), and cater to other essential 

requirements. 
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Figure 9: Map of value and distribution of TAB, TCS and ACS in Trusan Kinabatangan, Sabah in 

2018 to 2023 

 
Figure 10 shown graph pattern distribution of value NDVI, TCS and ACS from years 2018, 2020 and 

2023. The NDVI values have progressively increased from 0.68 in 2018 to 0.72 in 2023. This trend 

suggests that vegetation health and greenness have improved over the years. Higher NDVI values 

generally indicate more vigorous, healthier vegetation with denser foliage. The TCS values have risen 

from 26.79 in 2018 to 33.99 in 2023, showing a steady increase in the amount of carbon stored in the 

ecosystem. This trend suggests that the area has become more effective at sequestering carbon, likely 

due to an increase in mangrove density or natural regrowth of mangrove which enhances carbon storage 

of the area. The ACS values have consistently risen from 98.32 in 2018 to 124.73 in 2023, reflecting a 

steady increase in the carbon stored over the years. Comparatively, from 2018 to 2023, biomass 

accumulation significantly increases by 26.41 tons of carbon per hectare or 27% in a similar area. This 

suggests an expansion of aboveground biomass, likely due to an increase in tree cover, plant density, 

or vegetation health. Overall, this is a positive sign for ecosystem health, climate mitigation, and 

sustainable land management practices. 
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Figure 10: Graph showing pattern distribution value of NDVI, TCS and ACS from the years 2018, 

2020 and 2023 in the study area. 

 

 

CONCLUSION 

 
Recent extreme climate changes, such as increased global temperatures and more frequent severe 

weather events, have intensified environmental challenges, necessitating effective interventions. 

Despite the implementation of various international policies and actions such as the Paris 

Agreement's targets for reducing greenhouse gas emissions and promoting carbon sinks, there is 

ongoing debate about their effectiveness in enhancing carbon sequestration. For instance, while 

forest conservation and reforestation efforts aim to increase carbon storage, studies have shown that 

actual carbon sequestration rates can be influenced by factors such as forest management practices, 
 

land-use changes, and climate variability. This ongoing debate highlights the need for rigorous 

assessment and refinement of these strategies to ensure they achieve their intended goals of 

improving carbon capture and mitigating climate change. The study results show that increases in 

Above Ground Biomass (AGB), Below Ground Biomass (BGB), and Total Above Biomass (TAB) 

indicate a significant growth in biomass within the area. This growth reflects a healthier and more 

vigorous vegetation structure. The enhanced biomass levels are associated with an improved carbon 

sequestration capacity of the ecosystem, suggesting that the mangrove forest is increasingly 

effective in capturing and storing atmospheric carbon. This improvement underscores the 

ecosystem's role in mitigating climate change through enhanced carbon storage. To enhance the  
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accuracy of carbon sequestration assessments in mangrove ecosystems using remote sensing, 

several strategies should be employed. First, improving the quality of remote sensing data is 

essential for capturing precise and detailed vegetation and carbon stock information. Second, 

refining biomass and carbon models by developing allometric equations tailored to specific 

mangrove species and regional characteristics will enhance estimation accuracy. Third, validating 

remote sensing-based biomass models with ground-truth data is crucial for ensuring their reliability. 

Fourth, integrating climate and soil data can provide a more comprehensive understanding of factors 

influencing carbon sequestration. Additionally, establishing long-term monitoring programs will 

enable ongoing observation of biomass and carbon stock changes, offering a thorough assessment 

of sequestration potential. Finally, collaborating with experts from various research institutions will 

enrich the evaluation process and improve overall assessment quality. 
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