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Abstract A Terrestrial Laser Scanner (TLS) is an efficient tool for measuring the size, number and 

distribution of trees in artificial forests. The Forestry Agency of Japan has promoted the use of remote 

sensing technology to solve forestry-related problems such as the aging of the workforce. 

Classification of the TLS point cloud into trees parts (trunks, branches, and leaves) plays an 

important role in estimating the volume of forest resources, measuring the timber growth, and the 

three-dimensional (3D) modeling of tree shapes. However, the accurate classification of the 3D point 

clouds of conifer forests is still challenging issue. One difficulty is to represent the relationships 

between points in 3D space. Therefore, we propose a novel approach of classification. It is based on 

object-based image classification to images generated by projecting point clouds onto a plane. The 

purpose of this study is to investigate the feasibility of this approach. The point cloud data was 

obtained in a conifer forest in the Experiment Forest of the Graduate School of Bioresources, Mie 

University in Mie Prefecture, Japan. The point cloud was projected onto a cylindrical plane centered 

on the TLS based on elevation and azimuth angles. This resulted in panoramic image-like data. Each 

pixel has 12 features related to the points, including reflected intensity and distance from the TLS and 

maximum difference from neighboring points. The Orfeo Toolbox was used to manipulate the image 

objects, i.e. the groups of connected pixels. Object-based image classification was applied to the 

segmented images to classify them into trees parts and ground. As a result, some branch objects were 

correctly classified, but others were incorrectly classified as leaves. This approach can be applied as 

a new classification method. We expect this approach to be most appropriate for the original TLS 

data, which has a radial point cloud coordinate centered on the instrument. We plan to compare this 

method with other classification methods to confirm its effectiveness. 
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Introduction/ Background  

The Japanese forestry industry is facing some of challenges related to the workforce, 

including a decline in the number of workers. The number of forestry workers has declined 

over the past 40 years. The Forestry Agency of Japan (2020) reported that the workforce has 
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decreased by approximately one-third over the course of this period. Under these 

circumstances, the Forestry Agency of Japan has been encouraging the use of remote sensing 

technologies with the aim of reducing operational costs. These technologies include the Light 

Detection and Ranging (LiDAR) as a Terrestrial Laser Scanner (TLS), satellite data from 

Landsat and Sentinel, and aerial imagery captured by an Unmanned Aerial Vehicle (UAV). 

These remote sensing data could be analyzed to extract various forest attributes such as tree 

height, diameter, and number of trees. These measurements are of great importance during 

both harvesting and shipping operations as timber product. Furthermore, most of the artificial 

forests in Japan are conifers (mainly cedar and cypress), making them worthy of study. 

Considering these aspects, remote sensing technologies would be very useful for accurately 

assessing the shape and condition of coniferous trees. The TLS is particularly suitable for 

more detailed measurements of conifer structure. It allows measurements from the side with 

less interference from the canopy. The TLS has been widely studied in other tree-related 

fields, such as classifying tree parts using deep learning (Yang et al. 2024) and researching 

combined with the satellite data (Matsuoka et al. 2020). The TLS is very useful for research 

because of its flexibility with an increasing demand for its application. In recent years, TLS 

has become a very important tool in the pursuit of work efficiency in forestry operations. 

 

Problem Statement  

To evaluate the shape and condition of conifers, it is necessary to classify trees into parts 

(trunks, branches, leaves). Because the size, usage, and other characteristics vary greatly 

depending on the parts of the tree. Therefore, classification of the TLS point cloud into 

trees parts plays an important role in forestry industry. For example, the volume of forest 

resources can be estimated from branches and trunks size. We can also measure wood 

growth by acquiring and comparing the data continuously. Moreover, three-dimensional 

(3D) modeling of tree shapes can be applied to various simulations. However, the accurate 

classification of the 3D point clouds of a conifer forest is still challenging issue. One 

difficulty is to represent the relationships between points in 3D space. This problem could 

be solved by determining the interconnection of neighboring points with respect to the 

parts of the tree. However, the definition of “neighboring point” is also ambiguous in 3D. 

 

Objective  
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We propose a new classification approach to address above mentioned problem about the 

relation of points. This approach treats point cloud data as a two-dimensional (2D) image 

projected onto a plane, and performs object-based classification based on the image. Each 

image pixel is individually classified based on the object it belongs to, then the pixel is 

transformed back into a point cloud in the original 3D space to reconstruct the 3D data. 

This process has the advantage of efficiently using spatial relationships with neighboring 

points that are difficult to obtain directly in 3D space. It is therefore expected to contribute 

to improved classification accuracy and reduced processing time. In addition, there is a 

greater degree of freedom for 3D viewing and analysis. The objective of this study is to 

evaluate the feasibility and validity of this approach and to investigate further 

improvements and potential applications. 

 

Literature Review  

Fol et al. (2023) evaluated the performance of TLS compared to four different 3D data 

acquisition methods - close-range photogrammetry, fish-eye photogrammetry, mobile laser 

scanning, and mixed reality depth camera. This was driven by the fact that TLS had been the 

primary method for producing highly accurate 3D models of forests for many years, leading 

to the exploration of alternative acquisition methods. The TLS remained effective for 

obtaining 3D point cloud data of forests. 

Eto et al. (2020) investigated methods for classifying trees parts with high accuracy based on 

features such as the significant difference in reflected intensity between leaves and branches.  

In order to acquire tree features, it is necessary to properly separate the trunks, leaves, and 

branches from the point cloud. Therefore, they applied the machine learning methods, 

Random Forest (RF) and k-means clustering, to classify the point cloud. The trunks were 

determined by whether the shapes were in circular or oval when the point cloud was sliced in 

parallel to the ground. Leaves and branches were classified by RF using labels and abstracted 

features. The result was high accuracy RF classification of branches and leaves. They found 

that the trunks had the characteristic of being cylindrical shape perpendicular to the ground. 

The trunks were detected by this characteristic. They also found that leaves and branches can 

be classified with high accuracy using trained machine learning. In their study, the 

classification was performed in the state of a 3D point cloud. 

Liu et al. (2021) evaluated an approach to reconstruct tree geometry using a neural network 

called the Tree Part Net. The method was applied to the point cloud of hardwood trees. This 

method takes advantage of the assumption that trees are composed of local cylindrical shapes, 
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applied primarily to branches. They showed the effectiveness of the method in reconstructing 

the full 3D tree model geometry. An approach based on the characteristics of trees parts, such 

as the cylindrical shape of branches, is considered to be effective for trees parts classification. 

Xu et al. (2023) studied the geometric registration of the TLS point cloud, specifically TLS to 

TLS registration and TLS and the Airborne Laser Scanner registration. TLS can obtain more 

information if it can be registered with other observations using remote sensing technologies. 

For other studies, Saito et al. (2017) created a 2D image with a point cloud, and Onodera 

& Masuda (2015) matched the laser reflected intensity to the camera image. 

 

Methodology  

a. Analysis Flow: 

Figure 1 shows the workflow in this study. In TLS data acquisition, we describe TLS data 

acquisition. It mainly contains information about the location where the acquisition was 

performed and the status of the acquisition. In image generation, we describe the process 

of generating the 2D image and information about the generated 2D image. In this study, 

12 features have been assigned and an additional process was applied to our data to reduce 

the pixel gap in the generated image. In Object-based Image Analysis (OBIA) 

segmentation, we describe object-based segmentation. Labeling was also performed 

during this process. In SVM classification, we describe the classification using SVM. In 

the results and discussion, we evaluate the classification result mainly by the visual 

interpretation. 

  

Figure 1: Data Analysis Flow 
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b. TLS Data Acquisition: 

The point cloud was acquired in a conifer forest in the Hirakura Experimental Forest of the 

Graduate School of Bioresources, Mie University. Figure 2 shows the location of the 

Hirakura Experimental Forest. It is located at Misugi Town, Tsu City, Mie Prefecture, Japan 

(N34°27′ E136°14′). Figure 3 shows a photograph of the measurement. The target trees were 

conifers (cedar and cypress) and about 30 meters tall. We were able to measure almost the 

entire part of the tree except for the top of the tree behind the canopy. Measurements were 

made on October 11 from 10:00 to 17:00 and on October 12 from 10:00 to 14:00. The 

weather was clear on both days. The TLS acquires a point cloud by emitting a laser beam and 

detecting the reflected beam as it rotates 360 degrees around the instrument. We usually 

operate the TLS to scan the target from several surrounding positions to reduce the shadow of 

the beam and capture more detail. The data acquired from multiple scan positions is 

registered using reference spheres distributed around the target area. The approach in this 

study should be applied to the point cloud of a single scan because the point cloud will be 

reprojected onto the cylindrical plane centered on the instrument. Table 1 is the summary of 

the measurement settings, and Figure 4 shows a picture of the TLS. We used FARO Focus3D 

X330 (FARO 2024). The acquisition was conducted at three sites in the Experimental Forest, 

five scans at each location. At the time of measurement, eight reference spheres were placed 

at each location. For accurate registration, the TLS was placed in a position where at least 5 

spheres could be scanned. With a resolution of 1/2 and a quality of 4x, approximately 173 

million points were acquired in approximately 30 minutes. 
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 Figure 2: Location of the Data Acquisition Site, Hirakura Experimental Forest 

 

 Figure 3: Measurement Picture 
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Figure 4: TLS Picture (FARO Focus3D X330) 

Table 1: Acquisition Details 

Product Name FARO Focus3D X330 

Resolution 1/2 Quality 4x 

Observe Point Num. of site 5 Reference Sphere Num. of sphere 8 

 

c. Generation of 2D image:  

The acquired point cloud data were converted into files that could be processed by 

programming languages using FARO SCENE software. In our data, every point has (x, y, z) 

coordinates and two types of reflected intensity. In the conversion to a 2D image, all points 

were projected onto a cylindrical plane centered on the TLS based on elevation and azimuth 

angles. The elevation and azimuth angles were calculated by transforming the 3D Cartesian 

coordinates into the 3D polar coordinates, as shown in the following equation: 

𝑟 = √𝑥2 + 𝑦2 + 𝑧2 

𝜃 = cos−1
𝑧

𝑟
 

𝜑 = 𝑠𝑔𝑛(𝑦) cos−1
𝑥

√𝑥2 + 𝑦2
 

where  𝑟 is the distance from TLS (𝑟 >  0), 𝜃 is the azimuth angle of TLS (−180 <  𝜃 ≤

180), 𝜑 is the elevation angle (-90 < 𝜑 ≤ 90), (x, y, z) are the Cartesian coordinates, and 

sgn() is the signum function, respectively. 

The variables of azimuth and elevation angle were transformed into a 2D image by 

arranging them in sequence on a plane centered at zero. The result was saved as image file 
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in TIF format. The image looks similar to the panoramic image shown in Figure 5. Each 

pixel in this image represents individual TLS points. 

 
Figure 5: Generated 2D Image (Distance)  

Twelve features were assigned to each pixel. These features and pictures are shown in 

Table 2. Five variables 𝑥, 𝑦, 𝑧, reflection intensity 1, and reflection intensity 2 are the 

features acquired during the TLS measurement and represent the Cartesian coordinates 

and reflected intensity. The variable “distance from TLS” was the same as 𝑟 in above 

equation calculated during the polar coordinate transformation. Another five features were 

generated from above distance image. The variables “pixel variance (3 × 3)” and “pixel 

variance (5 × 5)” indicate the variance of distance calculated using 3 × 3 and 5 × 5 pixels 

around the center pixel, respectively. The variable "maxi. difference in distance from 

neighboring points" was the largest absolute distance between the center and the 

surrounding four pixels in the top, bottom, left, and right directions. This was used to 

more clearly represent 3D boundaries that are difficult to represent on a 2D plane. The 

variable "maxi. difference in distance from horizontal neighboring points" was largest 

absolute difference between the center and the surrounding two pixels in the left and right 

direction. This was used to clearly represent cylindrical features with different directions, 

such as trunks and branches. The variable "maxi. difference in distance from vertical 

neighboring points" was the largest absolute difference between the center and the 

surrounding two pixels in the top and bottom. This was used to clearly express the 

characteristics of the state of something associated with a horizontal cylindrical shape, 

such as a branch and leaves. “Data availability” was the index whether the pixel has valid 

(1) data or not (0). Sky does not have point cloud information, for example. 
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Finally, all features were multiplied by “data availability” as a mask image. These 

processes were performed in Python using the rasterio module (Mapbox 2024). The 

rasterio module is a library for reading, manipulating, and exporting raster data. This is 

because the rasterio module is based on the Geospatial Data Abstraction Library (GDAL, 

https://gdal.org/), which is characterized by its ability to perform coordinate 

transformations and projective system operations. 

Table 2: Assigned 12 Features 

 

d. OBIA Segmentation: 

The Orfeo Toolbox (OTB) (2024), the plugin tool of QGIS (2024), was used to manipulate 

the image objects i.e. the groups of connected pixels. The segmentation function of OTB was 

used to divide all pixels into the number of segments. The segmentation was conducted using 

the Mean Shift Algorithm. This is an algorithm that moves data points along a gradient of 

density and aggregates them at the location (mode) with the highest density. Each data point 

converges to the same mode through a process of repeated motion and clustering. It is 

suitable when the number of objects is large because the number of clusters does not need to 

be determined in advance. Furthermore, this algorithm is suitable when clusters of different 

shapes can be created. The algorithm was selected because we wanted to treat objects with 

similar characteristics as the same object, and because the image size is very large. 

Figure 6 shows an example of segmentation results. Each area bounded by a black line is an 
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object. Objects vary in size, even in the same tree part. Each parameter was determined 

manually by running the function several times and checking the segmentation results. The 

resulting parameters used are shown in Table 3. The other parameters are set by default. The 

"Spatial Radius" specifies the spatial search area. The “Range Radius” specifies the range 

within which the similarity of the features should be considered. The “Minimum Object Size” 

is a parameter to specify the minimum cluster size. The “Tile Size” is a parameter that 

specifies the size of the image when it is divided into small tiles for processing. Finally, 

image was segmented into approximately 60,000 objects, and it was saved in SHP format. 

 

Figure 6: Generated by the Segmentation 

Table 3: Segmentation Parameter 

Spatial Radius Range Radius Minimum Object Size Tile Size 

10 pixels 30 pixels 10 pixels 512 pixels 

 

e. SVM Classification: 

First, we labeled the trees parts to the segments using QGIS to be used for the training and 

evaluation of the classification. Five labels were given: “trunks, branches, leaves, soil, and 

no-data”. Figure 7 shows the results of labeling. Labeled files are overlaid on segmented 

files. In total, approximately 400 objects were labeled. Table 4 shows the number of each 

label. The number of labels for soil and no data is small because they are supplemental object 

classes. Branches and leaves were labeled especially more than the other categories because 

their boundaries are ambiguous. The understory vegetations were also labeled as soil. 

Although we still have a subjective aspect, the labeling was done as objectively as possible. 

This labeled SHP file is used as training data.  
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Figure 7: Labeled Objects for Training 

Table 4: Number of Labels 

 

Subsequently, each object was assigned features using OTB's Zonal Statistics. Table 5 shows 

the new features assigned to the object were the mean, the standard deviation, the maximum, 

the minimum, and the sum calculated from the above 12 features using the pixels belonging 

to the object. In total, 60 features (12×5) are assigned to the image object. Classification is 

performed based on these features.  

Table 5: Assigned 5 Features 

sum maximum minimum 

mean standard deviation 

 

Training was performed using OTB's Train Vector Classifier. The classification model was 

used a Support Vector Machine (SVM). Because SVM was the most accurate, when we 

performed pixel-based classification in preliminary experiment. Training used the default 

SVM parameters. 
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Finally, the learned classification model was applied to the entire segment using OTB's 

Vector Classifier. We conducted in a different field than the one we had already labeled. We 

applied it to all the objects. 

f. Supplementary Processing in 2D Image Generation: 

In this study, additional corrections were made to simplify the main line. It was the reduction 

of image resolution by half to fill the gap of 2D image. Processing was as follows. If there is 

a data in the top left pixel, replace that pixel as the output pixel. If there is a data in any of the 

four pixels other than the top left pixel, replace that pixel as the output pixel. If all four pixels 

are no data, replace that pixel as no data. This process has been performed for all pixels. 

According to the original specifications, this process is not necessary. This is because of the 

entire image is composed of filled pixels. However, we wanted to remove the noise to 

eliminate its effect on the features. In addition, the excessive processing time was also an 

issue in this study. Consequently, we were able to remove a lot of noise and compress the size 

down to 1/4 of its original size. 

 

Results and Discussion 

Figure 8 shows the SVM classification results in different colors. Although this is a 

qualitative assessment, approximately half of the objects were successfully classified. 

Branches and leaves appear to be relatively correct compared to the others. The large number 

of these labels may also have had an effect. The classification results differed from the 

labeled results in some labeled areas. This was because the training had not been done well. 

On the other hand, objects classified as branches were often correct as branches. However, 

some areas that should have been classified as branches were also misclassified as leaves. In 

addition, some trunks objects were misclassified as soil. Furthermore, several areas of no data 

were also misclassified as soil. These are because the boundaries of the objects were not 

completely separated during the segmentation stage. It could be improved by examining the 

segmentation parameters again and changing to an object with clearer boundaries. There were 

also a few objects that had anomalous straight line segmentation. We believe this is due to the 

tile size of the segmentation parameter. Therefore, increase the tile size value. When labeling, 

there should also be approximately 400 labels for correct answers as well as labels for 

training. This is intended to provide a quantitative evaluation of the classification results 

instead of a qualitative one. 
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Figure 8:  Classification Result. Top: entire image, middle: enlarged view of canopy, and 

bottom: enlarged view of floor. 
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Conclusion and Recommendation  

We have investigated an approach that takes several novel perspectives on 3D point cloud 

classification and confirmed that classification can be performed. The first perspective is a 

method that projects a point cloud into 2D and performs classification by considering the 

feature values of neighboring points. The second perspective is to perform 2D object-

based image classification on point clouds. These approaches have shown the potential to 

become a valuable classifier, even given the current results. The effectiveness of this 

method is expected. This is because many 3D point cloud classifications have not been 

performed on data that is not aligned. The effectiveness of this method is expected, 

because many 3D point cloud classifications are not performed on data that has not been 

registered. In the future, we are planning a phase to further validate the effectiveness of 

this method. First, we will confirm this using a confusion matrix to quantitatively evaluate. 

Second, permutation feature importances are performed to evaluate which features have a 

significant impact on classification. Based on the object labels, pixels are then labeled and 

returned to the 3D point cloud. We also plan to compare this method with other 

classification methods to confirm its effectiveness. This research has the potential to 

improve the effectiveness of forestry operations. However, this approach can be extended 

to areas other than forestry, and further development is expected. Furthermore, integrating 

the sequence of operations into point cloud processing software could yield significant 

commercial benefits. 
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