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Abstract: Accurate and rapid forest structure assessment is essential for ecological research, forest 

management, and environmental monitoring. Terrestrial light detection and ranging (LiDAR) scanning 

presents a promising approach to acquire detailed forest plot data rapidly. However, its considerable 

weight and high cost have largely prevented its use in large-scale forest plot surveys. We developed a 

helmet-mounted mobile LiDAR system (MLS) which incorporated a lightweight, low-cost LiDAR sensor 

costing approximately $750. The accuracy and efficiency of the system were then evaluated in two forest 

plots, one coniferous and one deciduous. A comprehensive comparison was also made between the 

developed MLS and a handheld MLS equipped with a high-end laser scanner. The developed MLS 

effectively captured forest structure and terrain surface information in two forest plots. The estimated 

individual tree height (TH) and diameter at breast height (DBH) were highly correlated with field 

measurements (DBH: R2 = 0.99, root mean square error (RMSE) = 0.016 m; TH: R2 = 0.93, RMSE = 

1.642 m). The DBH error was smaller for coniferous plots than for deciduous plots, but tree height was 

the opposite. Overall, the efficiency and accuracy of the developed MLS is comparable to that of the 

high-end MLS in both plots. Despite its short detection distance and narrow vertical field of view, it is 

believed that the lightweight and low-cost system developed in this study can alleviate the problems of 

long field operation time and expensive equipment in most forest inventory applications. 
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Introduction  

Forest sample plot surveys provide important data for forest management, biomass 

estimation and biodiversity monitoring. Traditional manual inventory methods are costly 

and time consuming and tree height estimation is not easy (Hyyppä et al., 2020). With the 

development of close-range remote sensing technology, LiDAR (Tang et al., 2015; Tansey 

et al., 2009), multi-ocular cameras (Mokroš et al., 2021) and even mobile phones (Wu et al., 

2023) can acquire 3D point cloud data of forest sample plots. Terrestrial laser scanning 

(TLS) is considered to be the most accurate method in close-range remote sensing for 

acquiring structural data such as DBH and tree height (Liang et al., 2016).  
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LiDAR is a remote sensing technology that has gained significant traction in the field of 

forestry by measuring the time it takes for the emitted laser beams to return after reflecting 

off the surfaces they encounter. Typically the TLS must be mounted on a tripod and utilizes 

LiDAR technology to acquire detailed 3D information about the forest environment in 

multiple scans (Stovall et al., 2023). While TLS offers high-resolution data, limitations exist, 

including high cost, time-intensive data acquisition, and heavy weight. These constraints 

can hinder extensive forest inventory applications in remote or challenging terrains. MLS 

represents a significant evolution in the application of LiDAR and simultaneous localization 

and mapping (SLAM) technology (Bailey & Durrant-Whyte, 2006; Durrant-Whyte & 

Bailey, 2006), allowing for rapid and extensive data collection over large forested areas 

(Miettinen et al., 2007). These systems integrate LiDAR sensors with a hand-held or 

backpack unit enabling dynamic tracking the sensor location and while simultaneously 

constructing or updating the map of forest environments while in motion (Muhojoki et al., 

2024; Stovall et al., 2023; Su et al., 2021).  

With the development of Micro-Electro-Mechanical System (MEMS) technology, light and 

small laser scanners and on-chip inertial measurement units (IMUs) can be integrated into 

helmet-based laser scanning systems (Lee et al., 2019; Li, Wu, et al., 2023; Sadruddin et al., 

2020). Lightweight helmet-mounted systems are more user-friendly in forest environments 

than backpack and handheld MLS systems (Li, Yang, et al., 2023). Right now, the 

integration of low-cost sensors into compact helmets and the exploitation of the special 

characteristics of these sensors to achieve high-precision real-time SLAM is still in the 

initial research phase. The ranging capability, weight, and noise of low-cost LiDAR sensors 

worn by humans for extended periods of time are challenging in forest environments. 

In this study, we developed a lightweight helmet-mounted MLS that integrates LiDAR and 

IMU in a single sensor which is priced at $750 to collect point clouds in forest environments. 

The point clouds obtained for two different tree species plots were processed to estimate the 

DBH and height of the trees using opensource tools. The results were then compared with 

those from a high-end MLS and manual surveys. The helmet-mounted MLS is a novel 

device for effective and accurate forest plot inventory and is essential for the development 

of the next generation forest inventory method.  

Material and Methods  

Study area 

The study area is located in Chaoyang District, Beijing, China (Figure 1, N40°00′ E116°22′). 

Two rectangular plots with different tree species and large differences in tree DBH and TH 
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were selected as test plots, which were 30 × 30 m in size with a stem density of 111–244 

stems/ha. One sample plot is deciduous species including Chinese scholar tree 

(Styphnolobium japonicum (L.) Schott) and London Planetree (Platanus acerifolia), and the 

other sample plot is coniferous trees such as Chinese red pine (Pinus tabuliformis Carrière). 

The topography of the deciduous sample plot is flat, with grass growing on the ground. The 

terrain of the coniferous plot is sloping and the ground is covered with grass and shrubs. 

 

Figure 1: The test plots in Beijing, China (left) and plot samples (right). 

Manual measurements 

Only stems with a DBH greater than 0.1 m in the sample plot were measured manually and 

each tree was assigned a unique serial number for identification. In total, the two 

collaborated to measure the TH, DBH and location of 32 trees and the measurements used 

as reference values. Reference TH values were obtained using an NTS-332R total station 

instrument (South Surveying & Mapping Technology Co., Ltd.) and reference DBH values 

were obtained using a diameter tap (WINTAPE Co., Ltd.). The reference locations were 

obtained using self-developed RTK equipment. 

Mobile laser scanning 

The mobile laser scanning systems compared in the study were a GoSLAM RS100 handheld 

system (Beijing Tianqing Zhizao Aviation Technology CO., LTD.) and a self-developed 

helmet-mounted system as presented in Table 1. The GoSLAM RS100 system was 

equipped with a rotating laser scanner for a larger vertical field of view.  While scanning, 

point cloud data can be viewed in real time by connecting to the scanner via a mobile phone 
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app. The helmet-mounted system uses a lightweight MID-360 sensor with tightly integrated 

LIDAR and IMU (Livox Technologies Co., Ltd.) named AIRCAS HM1. The MID-360 

LiDAR has a range of 0.1 to 70m and a range accuracy of 2 cm, both worse than the LiDAR 

used in the GoSLAM RS100. The total weight of the headset component of the AIRCAS 

HM1 system is 0.49 kg, which is less than a third of the weight of the handheld component 

of the GoSLAM RS100 system.  

Table 1 Specifications of the GoSLAM RS100 and AIRCAS HM1 

Specification GoSLAM RS100 AIRCAS HM1 

Distance accuracy 1cm 2 cm 

Angular accuracy ±0.01°  < 0.15° 

Range 120 m (80% albedo), 55 m 

(10% albedo) 

70 m (80% albedo), 40 m 

(10% albedo) 

Field of view Horizontal: 360°, vertical: 285° Horizontal: 360°, vertical: 

61° 

Speed of data acquisition 650 kHz 200 kHz 

Mass 1.5 kg (handheld) 0.49 kg (helmet-mounted) 

 

A Graphical User Interface (GUI) software named QTSlam360 has been developed based 

on the FAST-LIO2 (Xu et al., 2022) SLAM package to facilitate the control of the data 

acquisition process and the storage of point cloud data in the forest for AIRCAS HM1. The 

system employs a tightly coupled iterative extended Kalman filter to integrate LiDAR 

feature points with IMU data for odometry optimization. The raw points are organized by 

an incremental k-d tree data structure(Cai et al., 2021), and directly registered by the 

Iterative Closest Point (ICP) algorithm (Sharp et al., 2002; Tagliabue et al., 2021) to achieve 

real-time mapping while moving in a cluttered forest environment without the assistance of 

a Global Navigation Satellite System (GNSS). The QTSlam360 software can be utilized by 

operators on a tablet computer to facilitate the performance of scanning operations and the 

real-time observation of scanning data.  

Figure 2 illustrates the photographic record of scans conducted with both MLSs within a 

coniferous forest plot.  Operators scanned each sample plot from multiple paths using two 

MLSs independently.. In addition, to account for SLAM and cumulative registration errors 

in forest conditions, the scan paths were designed to start and end at the same point and in 

an S-shape. The QTSlam360 software employs a Robotic Operating System (ROS) to 

record sensor data from the AIRCAS HM1 for the purpose of evaluating the real-time 

performance of the proposed method. It took approximately 6 minutes to collect data at each 

sample plot. 
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Figure 2: Photographs of (a) the handheld MLS (GoSLAM RS100) and (b) the helmet-

mounted MLS (AIRCAS HM1) in coniferous plot. 

Point cloud processing 

The point cloud was preprocessed using CloudCompare (version 2.12.4) software, 

including plot point cloud cutting and removal of outliers. Separation of point clouds into 

ground and off-ground points using cloth simulation filtering (Zhang et al., 2016). The point 

cloud is then normalized using the ground points to remove the effect of ground elevation. 

Interactive segmentation method based on tree’s reference location was used to segment 

individual trees from the normalized point clouds. Normalized point clouds between 0.3m 

and 1.3m elevation were selected for trunk detection. Individual tree point clouds were 

segmented based on the trunk point cloud and reference position, named with the same 

number as the manual measurement. If there is a scrub point cloud seen around the trunk 

point cloud, the scrub point cloud needs to be removed manually. Finally, each tree point 

clouds were imported into R for further tree height and DBH estimation using the TreeLS 

package (de Conto et al., 2017). The height of each tree was calculated from the normalized 

height of the highest point of the tree. The point clouds at tree heights of 1.0 to 1.3 m are 

fitted to a circle with Iterated Reweighted Total Least Squares (IRTLS) algorithm 

(Mahboub et al., 2013), the diameter of which is DBH. The workflow for processing point 

cloud as shown in Figure 3. 

a b

a 
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Figure 3: The workflow for processing point cloud.  

Results and Discussion  

DBH and tree height were estimated from point clouds obtained from different MLS devices 

using the above method. For evaluation of estimated results, five metrics which include 

coefficient of determination (R2), root mean square error (RMSE), mean absolute error 

(MAE), relative Bias (reBias), relative RMSE (reRMSE) are used to verify the precision of 

our technique (Wu et al., 2023). 

DBH comparison 

From the regression fitting results in Fig. 4, it was found that the DBH extraction accuracy 

from the AIRCAS HM1 point cloud was higher, with R2 and RMSE of 0.99 and 0.016 m, 

respectively. And the R2 and RMSE of DBH extraction using the GoSLAM RS100 point 

cloud were 0.967 and 0.027 cm, respectively. The accuracy of DBH extraction from the 

AIRCAS HM1 was higher than that of the GoSLAM RS100. The point cloud noise of the 

GoSLAM RS100 is high near the trunk and the accuracy of the DBH estimation is lower. 
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(a)                                                                  (b) 

Figure 4:  Results of DBH linear regression (a) DBH estimated from AIRCAS HM1 point 

cloud vs. diameter tape; (b) DBH estimated from GoSLAM RS100 point cloud vs. 

diameter tape. 

Table 2 presents statistical DBH measurements for tree species named Chinese scholar tree, 

Plane tree, and Oil pine using AIRCAS HM1 Point Clouds. For Chinese scholar tree, the 

statistical analysis yielded an RMSE of 0.011 m and an MAE of 0.009 m, indicating the 

average differences between predicted and actual DBH values. The reBias was estimated at 

2.604%, suggesting a slight underestimation in the predictions compared to actual values. 

Additionally, the reRMSE was calculated as 3.241%. Under the condition of complete point 

cloud, the RMSE and relative accuracy of the Chinese scholar tree DBH extraction results 

were better than those of the oil pine DBH extraction results.  

Different tree species bark roughness affects the accuracy of point cloud DBH extraction. 

In the case of Oil pine, there is a phenomenon of cracked and warped epidermis, and there 

are some discrete points in the point cloud data caused by the warped epidermis, which 

affects the DBH extraction accuracy. Compared with Oil pine, the skin of plane tree is 

relatively smooth, and the proportion of discrete points in the point cloud data of chest 

diameter slices is significantly lower than that of Pinus.  

Table 2 Statistical DBH Estimated from AIRCAS HM1 Point Clouds for Three Tree 

Species  

Tree 

Species 
RMSE (m) MAE (m) reBias (%) reRMSE (%) 

Chinese 

scholar tree 
0.011  0.009  2.604  3.241  

Plane tree 0.016 0.012 3.351 4.311 

Oil pine 0.018 0.015 9.317 11.653 
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Tree height comparison 

From the regression fitting results in Fig. 5, it was found that the TH extraction accuracy 

from the AIRCAS HM1 point cloud was higher, with R2 and RMSE of 0.9308 and 1.642 

m, respectively, and the R2 and RMSE of TH extraction using the GoSLAM RS100 point 

cloud were 0.8579 and 2.1 m, respectively. The accuracy of the tree height estimates is 

relatively low in comparison with the DBH estimates, particularly in plot with dense 

canopies. Both MLS devices have difficulty in penetrating the canopy to obtain the tree top 

endpoint cloud, and therefore tree height is underestimated to a greater extent. The one 

reason is that the wavelength of the LiDARs is 905 nm, which has limited penetrability 

compared with the TLS with a wavelength of 1550 nm. In particular, dense foliage shading 

of tall broadleaf trees can seriously affect the quality of canopy data, meanwhile make the 

manual measurement of reference tree heights using a total station subject to some error. At 

last, stratification between some of the understory and dominant trees was not evident in 

sample plot 2, resulting in an overestimation of understory tree heights.  

 

(a)                                                                  (b) 

Figure 5:  Results of TH linear regression (a) TH estimated from AIRCAS HM1 point cloud 

vs. total station; (b) TH estimated from GoSLAM RS100 point cloud vs. total station. 

Comparison with existing systems 

We compare the proposed MLS system with several existing MLS systems: WHU-Helmet 

(Li, Yang, et al., 2023), Hand-held MLS (Stovall et al., 2023) , and Backpack MLS (Su et al., 

2021). As shown in Table 3, the AIRCAS HM1 system offers excellent portability and lower 

cost. The RMSE and MAE of DBH estimated from AIRCAS HM1 point clouds is also better 

than existing helmet-mounted system and Backpack MLS, but worse than Hand-held MLS. 

This is due to the higher scanning accuracy and distance resolution of the UTM-30LX lidar 
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used in the handheld MLS compared to the other lidars listed in Table 3. However, its 

maximum measuring distance of 30 m is not optimal for scanning in dense and tall forests.  

In order to fuse laser and IMU data for the purpose of pose estimation, the SLAM framework 

utilized in both the AIRCAS HM1 and WHU-Helmet is Fast-LIO2. Nevertheless, there are 

notable discrepancies between the two helmet-mounted systems with regard to the sensors 

and the algorithms employed for DBH estimation.  The MID-360 Lidar used in the AIRCAS 

HM1 has a larger horizontal field of view than the Avia LiDAR used in the WHU-Helmet, 

allowing for more precise matching of point clouds scanned at different locations. Although 

the MID-360 LiDAR has a worse maximum range and angular accuracy than the Avia 

LiDAR, the MID-360 LiDAR has a near blind spot of only 0.1m, much smaller than the 

Avia's 1m, making it more suitable for scanning in forests. The IRTLS algorithm for DBH 

estimation is designed to reduce calculation errors and improve circle fitting accuracy 

through iterative correction. Our results and previous studies show that DBH estimation with 

IRTLS algorithm is more robust to outliers in point clouds than RANdom SAmple Consensus 

(RANSAC) algorithm (de Conto et al., 2017; Zhou et al., 2023).  Cylindrical modelling 

methods perform better in approximating stem features because they can estimate the angle at 

which the stem segments are inclined from a straight vertical stem, whereas circle-based 

methods assume that the stem is perfectly vertical and can only estimate the radius of the 

stem segments in the horizontal plane.  

Table 3 A Comparative Analysis of Different Systems for Measuring DBH.  

Systems  Algorithm RMSE 

(m) 

MAE 

(m) 

Mass 

(kg) 

Lidar 

type 

Lidar 

price 

($) 

AIRCA

S HM1 

IRTLS 

cylinder fit 
0.016  0.013  0.49  

MID-

360 
750 

WHU- 

Helmet 

RANSAC 

circle fit 
0.038  0.033  1.5 

Avia 
1,599 

Hand-

held 

MLS 

LS circle fit 

0.013 0.004  0.85 

UTM-

30LX 4,275 

Backpac

k MLS 

LS circle fit 
0.02 0.02 8 

VLP-

16 

4,000 

× 2 
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Time requirements 

The efficiency of two MLSs were much higher than that of field measurements. In this study, 

the helmet-mounted MLS enabled the operator to obtain complete point cloud coverage of a 

sample plot in approximately 4–6 minutes. For comparison, the field measurements of two 

plots were acquired by two operators in approximately 100 minutes. Nevertheless, the 

processing time for the point cloud data is longer than that required for the field 

measurements. The data was processed using the open-source software CloudCompare and 

the R package TreeLS. Nevertheless, a considerable amount of manual correction work is 

still required, particularly if the tree is surrounded by dense scrub. The advancement of robust 

and efficient data processing algorithms has the potential to facilitate the promotion of 

helmet-mounted MLS in forest inventory applications. 

Conclusion and Recommendation  

In this study, we extracted the diameter at breast height (DBH) and tree height (TH) of each 

tree using point cloud data scanned by proposed helmet-mounted MLS in the two sample 

plots. The AIRCAS HM1 MLS is a system that is both lightweight and highly mobile, with 

both cost-effective and easy to obtain point cloud data. Furthermore, open-source software 

is used for the processing of these data. The results of the estimation were compared with 

those of the manual measurements and show that it enables accurate data collection in 

coniferous and deciduous plots. Implementation the IRTLS algorithm in DBH estimation 

ensures the robustness of the process to the presence of outliers in point clouds obtained 

from the AIRCAS HM1 MLS. The species of tree affects the accuracy of estimating both 

DBH and TH. DBH estimation accuracy is higher for broadleaved trees within 1–2 cm 

RMSE, while conifers show better accuracy for TH estimation within 1–2 m RMSE.  

Although proposed helmet-mounted MLS has its advantages, it still faces challenges, such 

as missing tree-top data, data processing complexities, and the need for accurate 

georeferencing. The deficit of tree-top data can be addressed by enhancing the penetration 

capability of LiDAR and developing MLS and UAV LiDAR data fusion techniques. 

Currently, there is still a lack of automated and accurate methods to detect trees in complex 

forest environments in real time and to extract some important tree attributes, such as tree 

species and tree height. It is recommended that future research concentrate on integrating 

these techniques with machine learning or artificial intelligence, with the objective of 

improving the efficiency of data processing and the accuracy of parameter estimation. This 

approach would further promote the utility of these techniques in forest inventory 

applications.  
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