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Abstract : Aquaculture in Singapore has been rapidly expanding in recent years in order to meet the 

increasing demand for seafood and to ensure Singapore’s food security without heavy reliance on 

imports. However, variations in the water quality of Singapore waters and occurrences of harmful algae 

bloom events cause fish kills and hinder Aquaculture production. Therefore, it is imperative to develop 

ways to monitor such changes in water quality and bloom events. This paper analyses the preliminary 

development of bio-optical models that are representative of Singapore waters. Measurements of 

biological and optical properties of water such as absorption, backscattering, chlorophyll, and turbidity 

are conducted in situ at field stations around Singapore, and analyzed in the laboratory. These 

measurements are then used to develop preliminary bio-optical models and compared against synthetic 

data retrieved from Hydrolight. Our study showed that the results from our bio-optical models 

correspond well with the synthetic data generated from Hydrolight. With more data from in-situ 

measurements, it is possible to develop machine-learning algorithms to generate water-quality maps 

and even predict algae blooms in Singapore. 
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Introduction 

Bio-optical models are empirical models that relate the intrinsic water optical properties (IOPs) 

such as absorption and backscattering to the relevant water quality parameters such as 

chlorophyll, CDOM and turbidity. The IOPs and water quality parameters can be accurately 

measured via in-situ and laboratory measurements, and used to develop the bio-optical models 

that are representative of the local coastal waters. However, in-situ measurements have limited 

spatial and temporal coverage. Satellite-based remote sensing may be used to estimate the IOPs 

of water over a large spatial extent. Water IOPs can be retrieved from satellite measured remote 

sensing reflectance of water using conventional spectral fitting techniques. In this paper, we 

use a radiative transfer code (RTC), Hydrolight (Mobley & Hedley, 2021), to generate 
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synthetic data of water reflectances. To ensure that the synthetic data is realistic and 

representative of the water types in our region, the bio-optical models constructed from field 

measurements are used as inputs to Hydrolight. We then retrieved water IOPs from the 

Hydrolight simulated synthetic reflectances using a spectral optimization method and 

compared the retrieved IOPs with the IOPs obtained from in-situ and laboratory measurements. 

 

Study Areas 

The study areas are the waters surrounding Singapore. Specially, field measurements have been 

conducted at 3 fieldwork zones: East Johor Strait (EJS), West Johor Strait (WJS), and 

Singapore Strait (SgS) as shown in the map in Figure 1. At each zone, there are 5 sampling 

stations. As of June 2024, we have conducted 24 sampling cruises along the EJS, WJS, and 

SgS since January 2024. 

 

 

Figure 1: Study areas around Singapore waters 
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Methodology 

a. Instruments and deployment 

Water samples for absorption measurements at all sites for the three zones were collected using 

sampling equipment and kept in the dark until filtration was done within the same day of 

collection. Samples were frozen until analysis. CDOM samples were filtered using 0.22μm  

size filter unit and absorption were measured within the same day of collection. Absorption 

for CDOM, total particulates, and total detritus components were measured and estimated using 

the Shimadzu UV-2600i spectrophotometer by the quantitative filter technique (QFT) method 

(Chee Yew Leong & Taguchi, 2005). The analyses of chlorophyll-a (Chl-a) concentrations 

were measured using the same spectrometer after filtration with solvents (Ritchie, 2008). 

Backscattering measurements are obtained using WETLABS Eco BB9 at nine discrete 

wavelengths, namely 412nm, 440nm, 488nm, 510nm, 532nm, 595nm, 650nm, 676nm, and 

715nm. BB9 is deployed directly on field sites by lowering it with a rope until the sensor is 

submerged in water. The instrument illuminates a volume of water using modulated LEDs and 

detects scattered light at an acceptance angle of 124ᵒ from the source beam (Moore et al., 2005).  

Turbidity is measured using Eutech TN-100 Turbidimeter and the units are in Nephelometric 

Turbidity Units (NTU). Water samples from each station are collected in a vial for which a 

850nm infrared light will then pass through the sample and the detected light scattered at 90ᵒ 

will be internally calculated by the device to get NTU readings of the water samples. 

 

b. Modelling equations 

The absorption coefficient of detritus and CDOM is modelled by an exponential equation 

(Jerlov, 1968): 

𝑎𝑑𝑔 (𝜆) =  𝐺𝑒−𝑆(𝜆−440𝑛𝑚) 

where 𝐺 = 𝑎𝑑𝑔 (440𝑛𝑚). 440nm corresponds to approximately the midpoint of the blue 

waveband peak for which most algae species will have during their photosynthesis process 

(Kirk, 1994). S represents the spectral shape which is dependent on the type of detritus and 

CDOM. The absorption of phytoplankton can be modelled using the equation (Lee et al., 1999): 

𝑎𝑝ℎ (𝜆) = 𝑃[𝑎0(𝜆) + ln(𝑃)𝑎1(𝜆)] 

where 𝑃 = 𝑎𝑝ℎ(440𝑛𝑚) is related to the concentration of Chlorophyll. 𝑎0(𝜆) and 𝑎1(𝜆) are 

basis functions normalized such that 𝑎0(440𝑛𝑚) = 1 and 𝑎1(440𝑛𝑚) = 0.  
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The backscattering coefficient of suspended particulate matter is usually modelled by an 

inverse power law: 

𝑏𝑏𝑝
(𝜆) = 𝑋 (

532𝑛𝑚

𝜆
)

𝜂

 

where 𝑋 = 𝑏𝑏𝑝
(532𝑛𝑚) is related to the concentration of particles. 𝜂 also represents the 

spectral shape which is dependent on the type and size of suspended particles. 

 

c. Hydrolight Simulations 

Hydrolight simulations are performed using the absorption and backscattering measurements 

obtained  from in situ and lab measurements as inputs.  The Hydrolight parameters used for 

pure water IOPs are from Pope and Fry seawater coefficients (Pope & Fry, 1997) and Fournier-

forand phase function (Fournier & Forand, 1994) for scattering. A semi-empirical sky model, 

RADTRAN-X (Gregg & Carder, 1990) is also used to compute the irradiances. Finally, we 

obtained the remote-sensing reflectances, 𝑟𝑟𝑠(𝜆) for all the stations for the wavelength range of 

400nm to 720nm. 

 

d. Retrieval of water IOPs from reflectance spectra 

 

In the retrieval procedures, the remote sensing reflectance 𝑟𝑟𝑠(𝜆) is calculated using a semi-

empirical model (Lee et al., 1999). The total absorption 𝑎(𝜆) is the sum of the absorption 

coefficients of the separate components:  

𝑎(𝜆) = 𝑎𝑤(𝜆) + 𝑎𝑝ℎ(𝜆) + 𝑎𝑑𝑔(𝜆) 

 where 𝑎𝑤(𝜆) is the absorption of pure water, and total backscattering 𝑏𝑏(𝜆) is the sum: 

𝑏𝑏(𝜆) = 𝑏𝑏𝑤(𝜆) + 𝑏𝑏𝑝(𝜆) 

where 𝑏𝑏𝑤(𝜆) is the backscattering of pure water. The semi-empirical model for 𝑟𝑟𝑠(𝜆) is 

calculated via the equations: 

𝑢 = 𝑏𝑏/(𝑎 + 𝑏𝑏) 

𝑟𝑟𝑠 = (𝑔0 + 𝑔1𝑢)𝑢 

where 𝑔0 = 0.089 𝑎𝑛𝑑 𝑔1 =  0.125 (Lee et al., 2002). The IOPs, G, P, X and S, 𝜂 are then 

estimated by fitting the Hydrolight generated reflectance to the semi-empirical model using 

the Sequential Least Squares Programming (SLSQP) (Kraft, 1988) by minimizing the root 

mean square error (RMSE) between the semi-empirical 𝑟𝑟𝑠(𝜆) and Hydrolight-derived 𝑟𝑟𝑠(𝜆). 
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Results and Discussion 

a. Reflectance spectra from Hydrolight and semi-empirical model 

 

Figure 2: An example of field vs Hydrolight 𝑟𝑟𝑠(𝜆) obtained on from station S2 

An example comparing the 𝑟𝑟𝑠(𝜆) obtained from semi-empirical model and Hydrolight on 4th 

April from station S2 is shown in Figure 2.  

 

b. Absorption of CDOM and detritus, 𝒂𝒅𝒈 (𝝀) 

The total data points obtained from the 24 sampling cruises across 6 months are 120 points. 

Using the field-measured 𝑎𝑑𝑔 (𝜆) , the averaged values for 𝐺 = 𝑎𝑑𝑔 (440𝑛𝑚) across the 6 

months are then obtained for the 15 stations. They are then plotted against the retrieved values 

of 𝐺 obtained from spectral optimization as show in Figure 3 below. Based on the scatter plot 

of Retrieved G against Field G, we obtained a linear equation of  y = 0.845x and a value of R2 

= 0.9711.  Based on the scatter plot, we can see that in general, the retrieved values of G are 

close to the field values. However, there is an underestimation of G when the values are higher 

( > 1.0) which occur at stations within WJS where the CDOM and detritus are higher. A similar 

scatter plot was also obtained for the Retrieved S and Field S values for all the 15 stations as 

shown in Figure 4. The linear equation obtained is y = 1.0196x with R2 = 0.9934. The retrieved 

S values are also compares quite well against field values as most of them lie close to the y = 

x line, albeit the values of retrieved S are slightly overestimated when compared to field S. 
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Figure 3: Scatter plot of Retrieved G against Field G 

 

Figure 4: Scatter plot of Retrieved S against Field S 
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Parameter R2 RMSE MAPE MBE 

𝐺 0.9711 0.1618 14.171 -0.0698 

𝑆 0.9934 0.0012 6.889 0.0003 

Table 1: Accuracy assessment of G and S 

We also perform further accuracy assessments using RMSE, mean absolute percentage error 

(MAPE) and mean bias error (MBE) as shown in Table 1. For the values of S, the values are 

quite accurate with small RMSE (0.012) and MAPE (6.889) and a small overestimation of 

0.0003 as we expect based on the plot in Figure 4. For the G values, the accuracy results shows 

larger deviations between the retrieved and field values of G. This is attributed to the stations 

in WJS where the values of CDOM and detritus are higher. The underestimation of G is also 

reflected from the negative MNE value of -0.0698. 

 

c. Absorption of phytoplankton, 𝒂𝒑𝒉 (𝝀) 

 

Figure 5: Scatter plot of Retrieved P against Field P 

Parameter R2 RMSE MAPE MBE 

𝑃 0.9229 0.1618 14.171 -0.0698 

Table 2: Accuracy assessment of P 
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For the absorption of phytoplankton, 𝑎𝑝ℎ (𝜆), we obtained the field values of 𝑃 =

𝑎𝑝ℎ(440𝑛𝑚) for all the 15 stations across the 6 months and plot them against the retrieved 

values of P obtained from spectral optimization as shown in Figure 5 above. Based on the 

scatter plot, a linear equation of  y = 0.4135x and a value of R2 = 0.9229.  This suggest that the 

values of retrieved P are underestimated as they lie below the y = x line. This is also supported 

by the negative MBE value (-0.0698) as shown in Table 2. 

 

d. Total absorption 𝒂(𝟒𝟒𝟎𝒏𝒎) excluding pure water 

 

Figure 6: Scatter plot of Retrieved a(440nm) against Field a(440nm) 

Parameter R2 RMSE MAPE MBE 

𝑎(440𝑛𝑚) 0.9546 0.5355 21.978 -0.3506 

Table 3: Accuracy assessment of a(440nm) 

The total absorption a(440nm) excluding pure water is also compared for the total retrieved 

values of G and P to the total a(440nm) obtained from field measurements. Based on the scatter 

plot of retrieved a(440nm) and field a(440nm), the linear equation obtained is y = 0.6462x with 

R2 = 0.9546. Overall, the low values of RMSE (0.5355) and MAPE (21.978) suggests that the 

fitting from optimization can obtain accurate results. However, the value of MBE = -0.3506 

also shows that the retrieved a(440nm) are understimated. Noticeably, the values of retrieved 
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a(440nm) are quite accurate for lower values but they become more underestimated at higher 

values. This is true for both the retrieved G and P values and they are attributed mainly to the 

values found in WJS which has the highest field 𝑎𝑑𝑔 (𝜆) and field 𝑎𝑝ℎ (𝜆) values obtained. 

This means that at areas where the values of 𝑎𝑑𝑔 (𝜆) and 𝑎𝑝ℎ (𝜆) are higher, the retrieved 

values are less accurate. This could be attributed to Lee’s model which was specified for the 

range of 𝑎𝑝ℎ (440𝑛𝑚) from 0.01 to 1.0 m-1 (Lee, 1994). This means that for value beyond this 

values as with the case for several stations in WJS zone (SA1,SA2 and SA3), it will be an 

extrapolation and may not be accurate. It is also worth it note that Lee’s model are not 

universally applicable and it is accurate only for water resembling the ones in his original study.  

 

e. Backscattering of suspended particulate matter, 𝒃𝒃𝒑
(𝝀) 

 
Figure 7: Scatter plot of Retrieved X against Field X 

 



                                 Asian Conference on Remote Sensing (ACRS 2024)  

 
Figure 8: Linear plot of Retrieved 𝜂 against Field 𝜂 

 

Parameter R2 RMSE MAPE MBE 

𝑋 0.9701 0.0171 22.573 -0.0131 

𝜂 0.9053 0.3733 28.261 -0.2404 

Table 4: Accuracy assessment of X and 𝜂 

For backscattering of suspended particulate matter 𝑏𝑏𝑝
(𝜆), a scatter plot for 𝑋 = 𝑏𝑏𝑝

(532𝑛𝑚) 

is obtained for the retrieved X and field X as shown in Figure 7. A linear equation is obtained    

as y = 0.7121x with R2 = 0.9701. Similarly, for the scatter plot of retrieved 

η and field η, a linear equation of y = 0.7592x with R2 = 0.9053 is obtained. An accuracy 

assessment using RMSE, MAPE, and MBE was also made to compare 𝑋 and 𝜂 retrieved to the 

field values. We can see that overall, 𝑋 and 𝜂 generated from spectral fitting have low RMSE 

and MAPE values albeit the values are underestimated (negative MNE values) when compared 

to field values. The RMSE values for 𝜂 are also higher compared to 𝑋. The values of 𝜂 are 

known to have a wide variation and it is often challenging to accurately estimate values of 𝜂 

(Yu et al., 2023). Historically, 𝜂 is assumed to be close to 1 (Gordon et al., 1988) for oceanic 

waters and 0 for turbid coastal waters (Morel & Maritorena, 2001) while some studies reported 

higher values.  
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Conclusion 

 

Using field measurements as inputs into Hydrolight, we simulated the synthetic remote sensing 

reflectance, 𝑟𝑟𝑠(𝜆) from Hydrolight. Then, we used the synthetic 𝑟𝑟𝑠(𝜆) and semi-empirical 

𝑟𝑟𝑠(𝜆) to retrieved IOPs, G, P, X and S, 𝜂 through spectral optimization. These parameters are 

then compared to the IOPs from actual field data. Overall, all of the retrieved values are close 

to the actual field values with R2 > 0.9. Though the R2 values are high, there are systematic 

biases. Most of the retrieved values are also underestimated when compared to our field results. 

A more robust retrieval method such as a Machine learning (ML) based retrieval algorithm 

could be used in future work to better capture the complex and subtle relations that affect the 

spectral characteristics of reflectance values.  
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