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Abstract Mobile mapping systems (MMS) and unmanned aerial vehicles (UAVs) are widely used to 
acquire 3D data for safe and rapid inspection works of infrastructure, such as bridges, dams, roads, 
railways, and other structures. In recent years, simultaneous localization and mapping (SLAM) has 
been applied to image and point cloud acquisition for construction and infrastructure inspection, such 
as volume measurement of earthworks using handheld SLAM scanners, autonomous patrol robot 
operation with SLAM, UAV flight control with SLAM for bridge inspection in non-GNSS positioning 
environments. SLAM can be categorized into SLAM using a laser scanner (LiDAR-SLAM). 
Representative conventional studies on Visual SLAM are mainly UAV control with ROS-based Visual 
SLAM and 2D modeling of complex shapes and ortho imaging using UAVs with OpenREALM. The 
ROS-based Visual SLAM includes a comparison of LiDAR, RGB cameras, and stereo cameras. Our 
previous results include the development of flight control methodologies to achieve infrastructure 
inspection using a UAV. We have developed a methodology to improve the stability of positioning visual 
odometry using multi-directional IMU stereo cameras. We also developed a methodology to improve 
the availability of positioning and seamless GNSS/non-GNSS positioning by quickly switching of the 
positioning mode between visual odometry and RTK-GNSS positioning. However, the technical issues 
of visual odometry remained the high environmental dependency of the processing, such as the presence 
of lighting and image features, and the error accumulation problem caused by inertial navigation. The 
additional technical issue is that self-position estimation by visual odometry is not easy when images 
are blurred due to camera motion and rotation. Therefore, this study focuses on the combination of 
visual odometry and 3D map matching. We propose a methodology based on temporal point cloud 
registration to rectify position and attitude estimation errors caused by image blur during when sudden 
rotations of a moving stereo camera. 
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Introduction  

In recent years, the acquisition of 3D spatial data using mobile mapping systems (MMS) 

and unmanned aerial vehicles (UAVs) has been widely used as a safe and fast method for 

inspecting infrastructure facilities such as bridges, dams, roads, and railways. In recent 3D 

measurements, the use of simultaneous localization and mapping (SLAM) to acquire point 

clouds is increasing. Examples of SLAM applications in infrastructure inspection include 

earthwork data acquisition using handheld SLAM scanners. The SLAM can be classified 

into LiDAR-based SLAM (LiDAR-SLAM). In this paper, we focus on visual SLAM and 

visual odometry for camera pose estimation. Visual SLAM and visual odometry are 
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intended for autonomous robots and UAV control in non-GNSS (global navigation satellite 

system) positioning environments. However, the technical challenges of visual odometry 

include high environmental dependency in processing, such as the presence or absence of 

lighting and image features, and the error accumulation problem caused by inertial 

navigation. In addition, visual odometry suffers from self-position estimation error when 

the captured image is blurred due to camera motion and rotation. Therefore, we propose a 

method to avoid the problem of image blur problem when the camera moves and rotates. 

However, when the camera image is blurred, the detection and tracking of the point for 

camera pose estimation becomes difficult. In this study, we apply a 3D map matching 

process when images are blurred. We develop a stable camera pose estimation methodology 

with an integration of 3D map matching and visual odometry to achieve robust camera pose 

estimation for UAVs. 

First, we describe our methodology, which consists of relative camera pose estimation by 

visual odometry and 3D map matching for the camera pose, correction process. Next, we 

describe an overview of the indoor walking measurement experiments. In the experiments, 

we summarize and discuss the data obtained by visual odometry using an IMU stereo 

camera. Then, we investigate whether errors in camera pose estimation by visual odometry 

during sharp turns are compensated by 3D map matching. 

 

Literature Review 
A study describes techniques for small UAVs in GPS-denied environments. As an 

introduction to this paper, UAVs are becoming smaller and more compact. Computing costs 

and power consumption are also becoming more constrained. Then, there is a need for 

technologies for self-positioning estimation and environmental mapping technologies 

without relying on GPS. Under these constraints, the development of SLAM systems that 

operate with high accuracy and in real time is an important issue. This system uses the 

bearing-only observations to estimate the position of the vehicle and build a feature map 

during the flight. An inverse depth method is used in applied in the undelayed feature 

initialization. A method that combines the Mahalanobis distance and the descriptor match 

of the SIFT features is used to improve the robustness of the data association. Simulation 

and real-world experiments were conducted to test the performance of the system. As a 

result, it can be concluded that the proposed SLAM algorithm can limit the error of vehicle 

position estimation while building a 3D feature map in GPS-denied environments. Future 
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work will focus on improving the computational complexity of the SLAM. In the extended 

Kalman filter (EKF) based algorithm, the state is augmented with new observations of 

features. The computational complexity increases quadratically with the number of features. 

These drawbacks are unavoidable in EKF-based methods for real-time SLAM for small 

UAVs. (Chaolei et al., 2012). Monocular visual SLAM for small UAVs in GPS-denied 

environments. However, there is a need to discuss the development of a Rao-Blackwellized 

based FastSLAM and the stabilization of the computation as a linear complexity. Another 

related study describes two tasks in UAVs flying for bridge inspection First, there are no 

UAVs that can fly seamlessly in indoor and outdoor environments (GNSS/non-GNSS 

positioning environments) such as bridges, and flight control is difficult under bridges where 

satellite signals cannot be received. However, autonomous UAV flight is typically enabled 

by using GNSS positioning, which means that seamless indoor-outdoor flight cannot be 

realized in non-GNSS environments, such as the interior subspace of bridges. Second, multi-

temporal images in surveys must be accurately superimposed, and it is not easy to match the 

camera position and angle of view with the previous survey when using UAVs for multi-

temporal imaging. Therefore, there is a need for a seamless indoor/outdoor flight function 

that can fly over bridges with mixed GNSS/non-GNSS positioning environments and a 

seamless indoor/outdoor external positioning function that combines the position and 

attitude of the UAV-mounted camera with the position and attitude of the previous survey. 

Therefore, this study proposes a seamless indoor/outdoor positioning method that combines 

RTK-GNSS positioning with visual odometry to switch positioning modes and suppress the 

accumulation of errors caused by visual odometry, and a method to match the position and 

attitude of the UAV-mounted camera with those of the previous survey by detecting and 

controlling image feature points. This also proposes a method of detecting and controlling 

image feature points to match the position and attitude of the UAV-mounted camera with 

the previous survey. In addition, a method is proposed for matching the position and attitude 

of the UAV-mounted camera by superimposing images taken during multiple periods using 

image feature point detection and correspondence processing. Prototypes of these functions 

have been developed and their performance is being verified. (Saito et al., 2024). However, 

it is necessary to discuss the development of a system to utilize high-resolution images taken 

by UAVs equipped with the proposed method as building information modeling and civil 

engineering information modeling data. 
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Methodology 

The proposed method consists of camera pose estimation by visual odometry, and 3D map 

matching for camera pose correction processing, as shown in Figure 1. First, the relative 

camera poses are estimated by visual odometry, and 3D map matching is applied to 

temporal point clouds with iterative closest point (ICP) in parallel. Next, to connect the 

relative camera pose error correction in visual odometry, a camera turn at a corner is 

detected using feature detection from images based on motion blur. When the estimated 

camera poses of visual odometry are discontinuous, relative camera pose correction is 

applied based on point cloud matching by ICP. 

 

a. Stereo camera calibration 

The internal and external parameters of each camera are estimated in a stereo camera 

calibration with Zhang’s methodology. The stereo camera calibration estimates the stereo 

camera baseline length, focal length, and lens distortion parameters. In our study, the 

estimated parameters are evaluated with reprojection errors using a checkerboard. 

 

b. Visual odometry 

Visual odometry is a camera pose estimation using images. For visual odometry to work 

effectively, the positioning environment must have sufficient light and dark and a textured 

surface to allow feature point extraction during movement measurements. It is also 

necessary to ensure that the scene changes overlap in a sufficiently continuous manner to 

capture camera frames continuously. It is also useful as a complement to other types of 

sensors such as GPS, inertial measurement units (IMU), and LiDAR. Literature studies have 

Figure 1: Proposed methodology. 
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shown the use of multi-directional IMU stereo cameras to improve the accuracy of camera 

pose estimation by visual odometry, and the robust control of UAVs with multi-directional 

stereo cameras. In our study, visual odometry with a single IMU stereo camera is used as 

the basic process, focusing on the advantages of lightweight 3D measurement systems and 

scale factor determination methods. 

 

c. 3D map matching 

3D map matching is the process of correcting for off-track camera positions in the acquired 

3D map (3D data). Map matching is the correction of errors in position information acquired 

by GNSS or SLAM to a considered optimal position by map data. Literature studies include 

a method of map matching by GPS positioning results of automobiles, automobiles can 

estimate their approximate absolute position by GPS and drive only as specified on the road. 

In our study, the camera pose estimation by visual odometry and the point cloud generation 

from stereo images are processed in parallel, and the camera pose estimation and posture 

during cornering are corrected by the results of the camera pose estimation and posture 

before and after cornering (Figure 2). A point cloud is generated from the clear stereo 

images before and after the blurred image. The correction is then reflected in the camera 

pose estimation and posture of the visual odometry by 3D map matching. 

Figure 2: 3D map matching conceptual diagram 
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d. Point cloud generation by semi-global matching and point cloud segmentation 

based on Euclidean distance 

We describe our proposed semi-global matching for point cloud generation and point cloud 

segmentation based on Euclidean distance. Semi-global matching is a stereo matching 

algorithm to obtain a disparity map from two image pairs (left camera image and right 

camera image). The advantages of using semi-global matching include its resistance to 

noise and its ability to smoothly determine distances even for objects with indistinct 

contours. A disparity map is a process over the entire image using the disparity, i.e. The 

positions where the object is misaligned between the left and right images. From this 

disparity map, the distance per pixel can be calculated. The Euclidean distance is a method 

to measure the distance between two points by applying the Pythagorean theorem to find 

the shortest linear distance. In our study, the disparity map is generated by semi-global 

matching within the depth thresholds, and point clouds matching the thresholds are 

generated from the disparity map. Then, the generated semi-global matching point cloud is 

segmented into clusters by calculating the modal frequency of labels by the minimum 

Euclidean distance between points of different clusters. 

e. Point cloud matching with ICP 

The ICP algorithm is a method for aligning two point clouds by iterative computation. The 

nearest neighbor points between the reference and input point clouds are called matching 

Figure 3: Stereo image and disparity map 
(left image and right image) 
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points, and the matching point is the point where the distance between the corresponding 

points is calculated to be the shortest. Then, the two point clouds are aligned by repeating 

the process between mapping of the two point clouds and estimating the translation vector 

and rotation matrix.  In our study, the point cloud matching process by ICP is used as a 

specific method of 3D map matching. The point clouds from disparity images by the semi-

global matching process for each frame in a time series are applied the ICP algorithm 

process between frames. 

f. Camera pose correction processing 

The location of the corner is identified by the number of feature points as the corner error.  

Next, the camera pose estimation of visual odometry is corrected by the camera pose 

estimation process calculated by the point cloud matching in 3D map matching at the frame 

number identified as the error. After the correction, the camera pose estimation of visual 

odometry is performed using the translation vector and rotation matrix.  

 

Experiment 

We conducted a walking measurement experiment on the 5th floor of the classroom 

building on our campus (Toyosu Campus) as an indoor experimental site (Figure 4). The 

measurement line consisted of a straight section of 4.3 [m] from the starting point to a corner, 

and a straight section of 4.3[m] from the corner to the end point. In the experiment, we 

acquired temporal stereo images at 30 [fps] with a speed of 1.5 [m/s] using an IMU stereo 

camera (ZED 2i, Stereolabs) connected to a desktop PC (Intel Core-i7, 2.50GHz). The 

stereo camera was mounted a forward direction along the direction of motion. The stereo 

camera was also rotated 90 degrees horizontally at the corner to represent a turn and 

measurement by an autonomous mobile robot or an indoor drone. We evaluated the 

proposed method in the walking measurement experiment. We also evaluated the horizontal 

deviation between the actual path and the camera trajectory data estimated by visual 

odometry and 3D map matching using point clouds before and after the corner. The position 

of the corner was determined from the images in each scene. In visual odometry, self-

position estimation was started to match the length of the experimental path. The conditions 

for position estimation by visual odometry in this study assumed an autonomous mobile 

robot and a UAV. Although the position estimation by visual odometry included 

accumulated errors and spike errors due to motion blur at the corner, the estimated trajectory 

was recorded as 3D position data without trajectory rectification. Self-position estimation 
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by 3D map matching was performed by generating point clouds before and after the turn. 

During the experiment, the walking speed was kept constant along the straight path, and we 

stopped to turn the camera at the corner. At the corner, the image was blurred during the 

turn, thus, feature points were not detected and tracked in the images. 

 

Results 

a. Stereo camera calibration results 

The results of the stereo camera calibration result are shown in Figure 5 and Figure 6. and 

the calculation of the re-projection error is shown in Figure 6. Figure 5 shows no obvious 

errors in the visualization of the external parameters. Figure 6 shows the reprojection errors. 

Although the 12th stereo pair had the maximum error value, the overall average reprojection 

error was 0.81 [pixel]. 

 

Figure 4: Experimental site and equipments 

Figure 5: Stereo camera calibration result Figure 6: Reprojection errors of 
stereo camera calibration 
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b. Results and discussion of relative mobility 

The results of the visual odometry processing are shown in Figure 7. The pre-corner 

trajectory was within approximately 0.9[m] of the X-axis deviation and within 

approximately 0.1[m] of the Y-axis deviation. The accuracy pre-corner of the motion 

measurement before turning was approximately 0.3[m], and the accuracy of the movement 

measurement after the turn was approximately 1.0[m].  

Figure 7: Visual odometry results 

Figure 8 shows the amount of movement between frames. The maximum displacement was 

0.18[m] and the minimum was 0.00[m]. Although the motion speed was 1.5 [m/s] (0.05 

[m/frame]), there were several spike noises.  

Figure 8: Amount of motion between frames 

Starting point 

Corner 
（  90°） 

The end point 

Actual path 

Visual odometry 
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Figure 9 shows the directional vectors of the camera rotation parameters. 

c. Point cloud generation based on Euclidean distance 

Figure 10 shows the results of processing based on Euclidean distance based processing for 

the point clouds generated from the stereo images acquired in the experiments. We 

confirmed that noise around the measured objects can be removed while preserving the 

geometry of the features. 

d. Corner detection from temporal images 

Figure 11 shows the result of the corner detection. The number of feature points decreased 

from frame number 400, which coincided with the position where blur appeared in the 

image. 

Figure 9: Camera rotation vectors 

Figure 10: Generated point clouds (left: all acquired point clouds, right: filtered point clouds) 
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e. Correction processing result 

The results of applying self-position estimation by 3D map matching are shown in Figure 

10. The orange line shows the actual path and the blue line shows the correction processing 

result. The maximum error on the X-axis was approximately 1.3 [m], and the maximum 

error on the Y-axis was approximately 0.1 [m]. 

 

Discussion 

a. Corner detection from temporal image 

As shown in Figure 11, it was confirmed that the proposed method could identify the 

location of the corner by judging the temporal images to be blurred. In addition to the frames 

with blurred images, there were other frames where the number of feature points decreased. 

It is assumed that this is because the measurement environment was in a dark environment. 

Figure 11: Corner detection result 

Figure 12: Correction result 
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As shown in Figure 9, the corner position was found to be in the range of 460 to 490. This 

difference is considered that the detection of the corner position was done by rough 

estimation based on the proposed corner detection. The reasons for this difference are also 

considered to be inaccurate feature point detection due to the dark environment and low 

accuracy of scale factor estimation due to inaccurate calibration. 

b. 3D map matching processing 

It was confirmed that camera pose estimation is possible for 3D map matching. Figure 13 

shows the full point cloud and the segmented point clouds. The processing of the whole 

point clouds measured by the stereo camera was too high process, so the point cloud was 

segmented, but this resulted in the loss of useful shape features for registration. As a result, 

it caused the camera pose and orientation estimation failed.  

Next, we evaluated the processing time of the point cloud segmentation by the Euclidean 

distance. The number of frames was set to 725 [frames], and the time required for each 3D 

map matching process was evaluated. The 3D map matching process of all point cloud 

results was 212.159358 [sec]. The 3D map matching process of the point cloud segmented 

by Euclidean distance results was 269.423366 [sec]. This result confirms that point cloud 

segmentation by Euclidean distance can reduce the processing time. In our study, the 

developed 3D map matching resulted in a processing time of 212.16 [sec]. This can be 

attributed to be the large number of input point clouds for the ICP algorithm. In our study, 

camera pose estimation by 3D map matching and visual odometry are processed in parallel. 

There seems to be a high dependency on the 3D map matching process because the 

processing time of 3D map matching is much longer than that of visual odometry. Therefore, 

as a future improvement method, it is considered that the algorithm construction to apply 

Figure 13: Frame shift before and after a sharp turn 
(Left: all point cloud, right: segmented point cloud) 
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camera pose estimation by 3D map matching when a corner position is detected during the 

processing of visual odometry will lead to a reduction in the processing time of 3D map 

matching. 

The maximum error in the X-axis was approximately 1.0[m], and the maximum error in the 

Y-axis was 0.1[m]. Therefore, we considered that this was caused by the light/dark 

environment. Thus, we can focus on an improvement method for environments where it is 

difficult to acquire feature points in light/dark environments. 

 

Conclusion 

In our study, we focused on 3D map matching in the case of sudden turns in visual odometry. 

We proposed a method to compensate for errors in visual odometry. Through our 

experiments, we confirmed that our methodology can estimate and correct the camera pose 

with visual odometry and 3D map matching. We confirmed that our methodology with point 

cloud segmentation based on Euclidean distance can reduce the processing time. In addition, 

we found that this system is highly dependent on the processing speed of 3D map matching. 

As our future work, our methodology will be improved to achieve higher processing speed 

and accuracy in 3D map matching, because the current 3D map matching requires too long 

processing time for real-time processing, and the processing time of 3D map matching is 

longer than that of visual odometry. We focus on parallel processing using GPU of camera 

pose estimation and 3D map matching to improve the processing speed. As an improvement 

plan, we focus on applying 3D map matching only at the corner. We also focus on other 

Figure 14: Self-position estimation by 3D map matching 
up to the position of a sharp turn 

.

.
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technical issues such as robustness to the lighting environment and motion blur at corners. 
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