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Abstract Kalu Ganga river basin in Sri Lanka is highly susceptible during the monsoon seasons, 

which frequently causes devastating floods, disrupting the lives of local communities.  Addressing this 

critical issue, this research focusses on enhancing the accuracy of water level predictions in the Kalu 

Ganga river basin. Traditional methods of water level prediction have proven to be inefficient, 

highlighting the need for more advanced and accurate forecasting techniques. This study developed a 

rolling forecasting system aimed at predicting future water levels at the Ratnapura station in the Kalu 

Ganga using several machine learning algorithms. Data collected over a period of 10 months was 

utilized, with 75% allocated for training and the remainder for testing and validation. We employed 

four machine learning models, namely Support Vector Regression (SVR), Random Forest (RF), 

Artificial Neural Network (ANN), and Long Short-Term Memory (LSTM) were used for prediction. All 

models demonstrated high accuracy in predicting water levels, with the ANN and LSTM models 

marginally outperforming the SVR and RF in most cases.  However, challenges were noted in 

accurately predicting peak water levels across all models. The limited 10-month data duration 

potentially constrained the models' predictive capability over extended periods. In conclusion, the 

rolling forecasting system developed in this study holds promise for integration into the rivernet.lk 

system, potentially enhancing flood management capabilities. Further research using a larger dataset 

spanning over multiple years is recommended to improve the accuracy of the models in predicting 

water levels over longer periods. This study offers insights that could advance water resource 

management and flood mitigation efforts in Sri Lanka. 
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Introduction  

Accurate flood flow forecasting is crucial for effective water resource management, 

particularly in populated regions near major rivers, to mitigate risks to society and the 

economy (Le et al., 2019). Hydrological forecasting employs mathematical and statistical 

modeling, including stochastic models like Autoregressive Moving Average (ARMA) and 

the Markov method (Elsafi, 2014). Recently, Machine Learning (ML) techniques such as 

Artificial Neural Networks (ANN), Support Vector Machines (SVM), Convolutional 

Neural Networks (CNN), and Long Short-Term Memory (LSTM) have gained traction for 

their ability to model complex nonlinear relationships without needing detailed physical 

process knowledge (Dazzi et al., 2021) 
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Floods, affecting over 2.3 billion people and causing $662 billion in economic losses in 

the past two decades, are expected to increase in frequency and severity due to climate 

change and population growth near water bodies (Kundzewicz et al., 2014; Winsemius et 

al., 2016). Ratnapura district in Sri Lanka, with its high annual rainfall and vulnerable 

geography, faces significant flood risks, particularly from the Kalu River, which has a low 

gradient and bottleneck that exacerbate flooding (Department of Census and Statistics, 

2012; Edirisooriya et al., 2018; Nandalal, 2009). 

 

This research presents a short-term real-time rolling forecasting system for floods in 

Ratnapura, analyzing water levels of Kalu Ganga, Way Ganga, and Denawaka Ganga 

using ML techniques. Moreover, the study evaluated forecasting parameters to improve 

the accuracy to implement the system on the rivernet.lk web service for public access, 

focusing on effective forecasting methods and accuracy enhancements. 

 

Literature Review 

Floods are among the most devastating natural disasters, exacerbated by climate change 

and human activities such as urbanization and deforestation. They result in significant loss 

of life, damage to infrastructure, and displacement of populations, along with 

contamination of water sources and disruption of transportation networks. Effective flood 

mitigation requires comprehensive risk assessment and management strategies that 

consider uncertainties in climate models and social behaviors (Kundzewicz et al., 2014). 

Floods can be categorized into several types, including flash floods, urban floods, pluvial 

floods, and river floods, each with distinct causes. Flash floods occur rapidly due to 

intense rainfall, particularly in hilly areas. Urban floods arise from heavy rain 

overwhelming drainage systems, while pluvial floods result from excess rainfall in urban 

areas. River floods are caused by rivers overflowing, typically due to heavy rain or 

snowmelt (Merz et al., 2010). Other types include coastal, groundwater, and compound 

floods, which occur simultaneously or successively, complicating management efforts 

(Kundzewicz et al., 2014). 

 

In Ratnapura, Sri Lanka, significant flooding has been recorded from 1883 to 2017, 

particularly during the monsoon season, with the Kalu River being a primary source due to 

its low gradient and bottleneck downstream (Edirisooriya et al., 2018; Nandalal, 2009). 
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ML has emerged as a transformative technology in flood risk management, identifying 

patterns in data to address complex problems through various algorithms (M. I. Jordan & 

T. M. Mitchell, 2015; Mahesh, 2018). The choice of algorithm is crucial, as it depends on 

the specific problem, highlighting the need for tailored approaches in flood risk assessment 

(Mahesh, 2018). ML algorithms are categorized into four types: supervised learning, 

unsupervised learning, semi-supervised learning, and reinforcement learning (Sarker, 

2021). 

 

In traditional ML, selecting the appropriate feature space is critical. For binary 

classification, instances may be mapped to an intermediary feature space if they cannot be 

separated directly. Deep learning (DL) architectures, which utilize multiple-layer neural 

networks, can efficiently model complex problems and represent non-linear functions 

(Ludovic Arnold et al., 2016). The backpropagation algorithm, developed in the 1970s and 

widely recognized in the 1980s, facilitated self-directed learning and automated feature 

extraction (Shrestha & Mahmood, 2019). 

 

DL algorithms include CNNs for image recognition, Recurrent Neural Networks (RNNs) 

for sequence-based applications, and Deep Belief Networks (DBNs) for unsupervised 

learning tasks (LeCun et al., 2015). Generative Adversarial Networks (GANs) are 

employed for generating synthetic data and have advanced fields such as computer vision 

and natural language processing (Goodfellow et al., n.d.). RNNs and LSTM networks 

excel in sequential data processing, with LSTMs addressing the vanishing gradient 

problem (Hochreiter & Schmidhuber, 1997).  

 

Flood risk management is essential for mitigating the impacts of floods, involving both 

structural and nonstructural measures such as early-warning systems (Jongman et al., 

2012; Liu et al., 2018). Accurate river water level prediction is crucial for effective water 

resource management and flood control (Kim et al., 2022). Forecasting tools include 

conceptual models, physically based models, and "black box" models, with the latter 

relying on historical data to capture complex interactions without requiring physical 

process understanding (Mosavi et al., 2018; Zounemat-Kermani et al., 2020). 
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Short-term flood prediction is particularly challenging in densely populated areas, 

necessitating timely warnings to minimize damage (Zhang et al., 2018). Various ML/DL 

models have been implemented for flood prediction, including ANN, Multilayer 

Perceptron (MLP), Adaptive Neuro-Fuzzy Inference System (ANFIS), Wavelet Neural 

Networks (WNN), SVM , Decision Tree (DT), Random Forest (RF), and hybrid models 

(Dazzi et al., 2021). 

 

The integration of ML into flood risk management offers promising advancements in 

predicting and mitigating flood events. As climate change continues to influence flood 

patterns, the need for reliable and accurate forecasting methods becomes increasingly 

critical. The ongoing development and application of ML techniques will play a pivotal 

role in enhancing flood risk management strategies globally. 

 

Methodology 

a. Data Used 

The Irrigation Department of Sri Lanka has implemented water level gauges along the 

Kalu Ganga river and its seven tributaries to monitor water levels at a one-minute 

resolution. The gauges transmit data via GSM technology to a public website that displays 

real-time water levels, improving data collection in the basin. For this research, 10 months 

of one-minute interval data was collected from December 2020 to October 2021 to 

analyze water levels and flood risk in the Kalu Ganga basin. 

 

b. Study area 

The study area for this research project is the Kalu Ganga river basin (Figure 1), focusing 

on water level gauges in Ratnapura, Kahawatta, and Palmadulla. Ratnapura is the most 

flood-affected area in the basin, making it critical for study. The Denawaka Ganga at 

Palmadulla and the Wey Ganga in Kahawatta are also important tributaries for this 

research. Data collected from these three gauges will be used to predict the water level of 

the Kalu Ganga in Ratnapura, providing insights into flood risk in the area. This study is 

vital for informing water management and flood mitigation decisions in the Kalu Ganga 

river basin. 
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Figure 1 Study Area 

 

c. Software used in processing and analyzing 

The initial examination of the dataset using Microsoft Excel provided a first glance at its 

structure and contents. However, Excel has limitations for complex data manipulation, 

transformation, and analysis. Python's pandas and NumPy libraries were chosen for 

preprocessing due to their powerful data manipulation tools, allowing efficient cleaning 

and transformation of large datasets. The tensorflow and keras libraries were used to 

develop ML models, including ANN, LSTM, SVR, and RF, based on their suitability for 

the specific problem. The keras.metrics library calculated metrics such as R-squared (R2), 

Mean Squared Error (MSE), and Root Mean Squared Error (RMSE) to evaluate model 

performance. Matplotlib and seaborn libraries were employed to visualize the data, and 

Jupyter Notebook through Anaconda facilitated the entire process. 

 

d. Data Pre-Processing 

The study involved preparing a dataset received as a spreadsheet with columns for various 

locations, with each row representing a data point at 1-minute intervals. Initial inspection 
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revealed that some values in the Ratnapura column were zero, not missing. Linear 

interpolation was applied to replace these zeros with approximated values. 

Next, a Python script was used to extract 10-minute interval data from the spreadsheet, 

which was saved as a CSV file for further analysis. Outlier detection using Python's 

describe() function showed no outliers, likely due to prior data correction during 

collection. Finally, data irrelevant to the study area was removed, focusing on water level 

data from specific tributaries, including Ratnapura, Pelmadulla, and Kahawaththa, while 

excluding others. 

 

e. Model Training and Saving Model Parameters 

The study utilized Python 3.11.3 and Jupyter Notebook to train four ML/DL models: 

Support Vector Regression (SVR), RF, ANN, and LSTM Network. A total of 16 scripts 

were developed for predicting water levels at various future timestamps, including 30 

minutes to 3 hours ahead. The code was organized into sections, each covering data 

preprocessing, model training, and evaluation. The dataset was prepared as outlined in the 

Data Preparation section, ensuring optimal accuracy for the models. The ANN model for 

30-minute predictions was highlighted, beginning with the importation of essential 

libraries, followed by defining future and lookback periods for time series analysis. Data 

was imported using Pandas, and the first 3000 data points were visualized using 

Matplotlib to identify trends. A custom function, df_to_x_y(), was created to separate 

dependent and independent variables based on the defined periods. The dataset was 

divided into training (75%), validation (15%), and testing (10%) sets. The LSTM model 

was constructed using Keras, featuring an input layer, an LSTM layer, and dense layers 

for output. The model was compiled with MSE as the loss function and Adam as the 

optimizer, with a learning rate of 0.0001. The training process involved fitting the model 

to the training data over 50 epochs, utilizing a callback function to save the best model 

based on performance. 

 

f. Model Loading and Prediction 

This section outlines the Python code used to load a saved ML/DL model and predict 

future water levels. Developed in Python 3.11.3 within Jupyter Notebook, the code is 

organized into sectioned snippets for clarity. 
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A custom function, plot_predictions, is defined to visualize predicted and actual water 

levels. It takes parameters for the model, independent variables (x), actual dependent 

variable values (y), optional start and end indices, a title for the plot, and a folder path for 

saving results. The function predicts values using the trained model, creates a Pandas 

DataFrame to compare predicted and actual values, and calculates performance metrics 

such as R2, MSE and RMSE. It generates a scatter plot and a line plot to illustrate the 

predictions and actual trends, saving the results as a CSV file if a folder path is provided. 

 

The function is subsequently called to predict water levels using the chosen model on the 

training, validation, and test datasets, each time plotting the actual versus predicted values 

and saving the results as specified. This structured approach ensures effective 

visualization and evaluation of the model's performance in predicting water levels. 

 

Results and Discussion 

The results obtained in this study can be divided into two main parts: (a) the intermediate 

results and (b) the final results that were derived from intermediate results. The 

intermediate results include the performance metrics and validation results obtained 

during the training and evaluation of various ML and deep learning models. The final 

result of this study denotes the best performing model that can accurately predict the 

future water levels based on the historical data. This was achieved by analyzing the 

intermediate results and selecting the model with the best performance metrics, such as 

the lowest MSE and highest correlation coefficient (R2 score), among others. 

 

a. Intermediate Results 

The research used four major approaches for predicting future water levels: SVR, RF, 

ANN, and LSTM. Each approach has its own intermediate results that can be analyzed to 

evaluate the performance of the models. This section discuss the results obtained from 

each approach separately. 

 

Support Vector Regression (SVR) Approach 

Figure 2 below displays the actual versus predicted results of SVR models for forecasting 

water levels 30min, 1h, 2h, and 3h into the future. 
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Figure 2 SVR actual and predicted scatter plots 

Table 1 presents the evaluation metrics for the SVR models for each prediction time frame. 

The metrics used for evaluation include MSE, RMSE, and coefficient of determination (R2 

score). 

Table 1 SVR evaluation criteria 

Evaluation 

Criteria 

Duration 

30m 1h 2h 3h 

R2 1.00 0.99 0.96 0.91 

MSE 0.00 0.01 0.05 0.11 

RMSE 0.06 0.11 0.22 0.33 

 

The obtained intermediate results of the SVR approach reveal that it shows promising 

results for 30-minute and 1-hour into the future predictions, as depicted in Figure 2. 

Additionally, it provides better insights into peak values. However, for 2-hour and 3-hour 

into the future predictions, the SVR model was not performing well and could not 

accurately predict peak water levels above 5 meters. 

 

The evaluation criteria for the SVR model are presented in Table 1. It can be observed 

that the model performed exceptionally well for the 30-minute and 1-hour into the future 

predictions with R2 values of 1.00 and 0.99, respectively. This implies that the SVR model 

can explain 100% and 99% of the variability in the water level data for the 30-minute and 

1-hour forecasts, respectively. The MSE and RMSE values for these timeframes are also 

quite low, which indicates the model's high level of accuracy. However, for the 2-hour 

and 3-hour into the future predictions, the R2 values are relatively lower at 0.96 and 0.91, 
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respectively, indicating a decrease in model performance. Additionally, the MSE and 

RMSE values are higher for these timeframes, suggesting lower accuracy. 

 

Random Forest Regression Approach 

Error! Reference source not found. displays the actual versus predicted results of RF 

models for forecasting water levels 30min, 1h, 2h, and 3h into the future.  

 

Figure 3 RF actual and predicted scatter plots 

Figure 3 presents the evaluation metrics for the RF models for each prediction time frame. 

The metrics used for evaluation include MSE, RMSE and coefficient of determination (R2 

score). 

Table 2 RF evaluation criteria 

Evaluation 

Criteria 

Duration 

30m 1h 2h 3h 

R2 1.00 0.98 0.92 0.84 

MSE 0.01 0.03 0.1 0.2 

RMSE 0.08 0.16 0.31 0.44 

 

The results of RF regression are presented in Figure 3, which shows the scatter plot of 

actual vs predicted values. The RF model did not perform well in predicting the water 

levels for any of the forecast horizons. It failed to accurately predict even the lower water 

level values such as 2m and 3m, which are not the peak values leading to flooding in 2-
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hour and 3-hour timeframes. Therefore, the RF approach is not a suitable technique for 

forecasting future water levels of Kaluganga at Ratnapura based on the results obtained. 

As seen in the evaluation criteria of the RF regressor in Table 2, the model has shown a 

good performance for the 30-minute and 1-hour into the future predictions with R2 values 

of 1.00 and 0.98, respectively. However, the performance of the model significantly 

decreases for the 2-hour and 3-hour into the future predictions, with R2 values of 0.92 and 

0.84, respectively. The MSE and RMSE also follow a similar pattern, indicating the 

model's limitations in predicting the peak water levels accurately for longer timeframes. 

 

Artificial Neural Network Approach 

Figure 4 displays the actual versus predicted results of ANN models for forecasting water 

levels 30min, 1h, 2h, and 3h into the future.  

 

Figure 4 ANN actual and predicted scatter plots 

Table 3 presents the evaluation metrics for the ANN models for each prediction time frame. 

The metrics used for evaluation include MSE, RMSE, and coefficient of determination (R2 

score). 
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Table 3 ANN evaluation criteria 

Evaluation 

Criteria 

Duration 

30m 1h 2h 3h 

R2 1.00 0.99 0.96 0.90 

MSE 0.00 0.01 0.06 0.13 

RMSE 0.06 0.12 0.24 0.37 

 

The ANN approach, as depicted in Figure 4, shows promising results for 30-minute, 1 

hour, and 2-hour predictions. However, it appears to struggle with accurately predicting 

peak water levels for the 3-hour timeframe. This may be due to the complexity of the 

network and the amount of data used, as well as the potential for overfitting to the training 

data. Further optimization and tweaking of the model may improve its accuracy for 

longer-term predictions. 

 

Based on the evaluation criteria of R2, MSE and RMSE for the ANN model shown in 

Table 3, the results indicate that ANN has performed well in predicting water levels for 

the 30-minute, 1-hour, and 2-hour timeframes. However, for the 3-hour timeframe, the 

ANN model showed a decrease in accuracy as it could not accurately predict peak water 

levels. The values for all timeframes are above 0.9, indicating a strong correlation 

between the actual and predicted values. The MSE and RMSE values are also relatively 

low for the 30-minute and 1-hour predictions but increase for the 2-hour and 3-hour 

predictions, indicating a decrease in model performance for longer timeframes. Overall, 

the ANN model has shown potential for accurately predicting water levels, but further 

improvements are needed for longer-term forecasting. 

 

Long-Short Term Memory Network Approach 

Figure 5 displays the actual versus predicted results of LSTM network models for forecasting 

water levels 30min, 1h, 2h, and 3h into the future.  
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Figure 5 LSTM actual and predicted scatter plots 

Table 4 presents the evaluation metrics for the LSTM network models for each prediction 

time frame. The metrics used for evaluation include MSE, RMSE, and coefficient of 

determination (R2 score). 

 

Table 4 LSTM evaluation criteria 

Evaluation 

Criteria 

Duration 

30m 1h 2h 3h 

R2 1.00 1.00 0.99 0.96 

MSE 0.00 0.00 0.01 0.04 

RMSE 0.03 0.05 0.11 0.20 

 

shown in Figure 5, the LSTM model performed very well for all timeframes. The actual 

and predicted scatter plots show that the LSTM model was able to predict water levels 

accurately for 30 minutes, 1-hour, and 2-hour into the future. While there were some 

difficulties in predicting peak water levels accurately for the 3-hour timeframe, overall, 

the LSTM model outperformed the other ML models in terms of accuracy and reliability 

for this specific water level forecasting task. 

 

The LSTM network approach evaluation criteria, as shown in Table 4, exhibited highly 

accurate results for all timeframes. The 30-minute, 1-hour, and 2-hour predictions showed 
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exceptional accuracy, while the 3-hour predictions had some complications in accurately 

predicting peak water levels. However, the overall performance of the LSTM model was 

highly promising, as evidenced by its R2 values of 1.00, 1.00, 0.99, and 0.96 for the 30-

minute, 1-hour, 2-hour, and 3-hour predictions, respectively. The MSE values for the 30-

minute and 1-hour predictions were 0.00, indicating perfect accuracy, and the MSE values 

for the 2-hour and 3-hour predictions were 0.01 and 0.04, respectively, indicating highly 

accurate predictions. The RMSE values for the LSTM model were 0.03, 0.05, 0.11, and 

0.20 for the 30-minute, 1-hour, 2-hour, and 3-hour predictions, respectively, further 

supporting the high accuracy of the model. 

 

b.  Final Results 

This section presents the final results that were used to determine the best-performing model 

for the task based on the evaluation criteria of all the ML models trained and validated. The 

following figures (Figure 4.9 and Figure 4.10) illustrate a comparison of the evaluation 

criteria of all the trained models and timeframes, which led to selecting the best performing 

model for the work. 

Table 4 Evaluation Criteria comparison for all models 

Model 
Evaluation 

Criteria 

Duration 

30m 1h 2h 3h 

 

SVR 

R2 1.00 0.99 0.96 0.91 

MSE 0.00 0.01 0.05 0.11 

RMSE 0.06 0.11 0.22 0.33 

 

RF 

R2 1.00 0.98 0.92 0.84 

MSE 0.01 0.03 0.10 0.20 

RMSE 0.08 0.16 0.31 0.44 

 

ANN 

R2 1.00 0.99 0.96 0.90 

MSE 0.00 0.01 0.06 0.13 

RMSE 0.06 0.12 0.24 0.37 

 

LSTM 

R2 1.00 1.00 0.99 0.96 

MSE 0.00 0.00 0.01 0.04 

RMSE 0.03 0.05 0.11 0.20 
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Figure 6 Evaluation Criteria comparison chart 

The evaluation criteria in Table 5 and Evaluation criteria comparison in Figure 6 shows 

the performance of four different models used for predicting the water levels at different 

timeframes. SVR shows very high accuracy in predicting the water levels for 30 minutes 

into the future, with an R2 value of 1.00 and an MSE value of 0.00, indicating perfect 

predictions. However, its performance decreases as the timeframe increases, with an R2 

value of 0.91 and an RMSE value of 0.33 for the 3-hour timeframe. 

 

RF model shows good results for 30 minutes and 1-hour predictions with an R2 value of 

1.00 and 0.98, respectively. However, its performance also decreases significantly as the 

timeframe increases, with an R2 value of 0.84 and an RMSE value of 0.44 for the 3-hour 

timeframe. 

 

The ANN model also shows promising results for 30 minutes, 1 hour, and 2 hours 

predictions, with an R2 value above 0.96. However, similar to SVR and RF models, its 

performance decreases for the 3-hour timeframe with an R2 value of 0.90 and an RMSE 

value of 0.37. 

 

On the other hand, the LSTM model shows the best performance across all timeframes, 

with perfect predictions for the 30-minute timeframe. Moreover, it continues to perform 

very well for the longer timeframes, with an R2 value of 0.99 and an RMSE value of 0.11 

for the 2-hour timeframe and an R2 value of 0.96 and an RMSE value of 0.20 for the 3-

hour timeframe. Therefore, the LSTM model is the most suitable model for predicting 

water levels accurately across different timeframes. 
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Conclusion and Recommendation 

Water resources management is a critical issue in many regions of the world, including Sri 

Lanka. Effective management of water resources requires accurate and timely information 

about the water levels in rivers and other bodies of water. In recent years, advances in data 

collection and ML techniques have made it possible to build predictive models that can 

forecast water levels with high accuracy. This research focused on the use of ML 

techniques to predict water levels in the Kalu Ganga river at Ratnapura station. 

The dataset used for training, testing and validating the models only covers a period of 10 

months, which may not be sufficient to capture the full range of variability in water level 

changes in the Kaluganga basin. The basin is subject to the influence of two distinct 

monsoon seasons that occur at different times of the year, resulting in complex and 

dynamic hydrological conditions. By training the models on a limited dataset, there is a 

risk of overfitting to the available data and failing to generalize to other time periods or 

environmental conditions. This could lead to inaccurate predictions when the models are 

used for real-time flood forecasting or other applications. To address this limitation, it 

would be beneficial to collect and incorporate data from multiple years into the model 

training process. By doing so, the models can learn to capture the longer-term trends and 

patterns in water level changes and better account for the effects of interannual variability 

and changing environmental conditions.  

 

The developed rolling forecasting system can be implemented into the rivernet.lk system, 

which is currently managed by a private firm, as an embedded system to access real-time 

data from the Kalu Ganga river and its tributaries and provide future predicted water levels 

at the Ratnapura station. The purpose of this integration is to provide access to real-time 

water level data and display future predicted water levels of Kalu Ganga at Ratnapura 

station. The trained models can be implemented on rivernet.lk servers as an embedded 

system, enabling users to access accurate and reliable information on future water levels. 

By incorporating this system, the management of water resources in the region can be 

significantly improved, leading to better decision-making and more effective planning for 

future events. This system can be a valuable tool for decision-makers, water resource 

managers, and the public to make informed decisions related to flood preparedness, and 

other related activities. 
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