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Abstract: Human-Elephant Conflict (HEC) is a significant issue in regions where human settlements 

intersect with elephant habitats, posing a threat to lives and livelihoods. Unmanned Aerial Vehicles 

(UAVs) equipped with thermal infrared (TIR) cameras offer a promising solution for real-time 

monitoring and management in HEC situations. This review paper comprehensively examines the 

integration of Convolutional Neural Network (CNN) algorithms into UAV video streaming to enhance 

object detection in TIR videos. The paper begins with an overview of HEC mitigation strategies, 

highlighting the role of UAV surveillance and the need for accurate object detection algorithms to 

distinguish between Humans and Elephants in challenging environmental conditions. The background 

and related work section examines previous research on HEC mitigation and object detection 

techniques in UAV videos, specifically focusing on CNN-based approaches and challenges unique to 

TIR imagery. The paper then explores object detection algorithms tailored for TIR videos, detailing 

architectures like YOLO, SSD, and Faster R-CNN, and highlighting their strengths and limitations. 

Considerations of integrating CNN algorithms into UAV systems are discussed, addressing challenges 

such as computational efficiency and optimisation for TIR video streaming. The review also covers 

evaluation metrics and performance analysis, stressing the importance of precision, recall, F1 score, 

and Intersection over Union (IoU) in assessing algorithm effectiveness. Furthermore, the paper 

outlines future directions and challenges, including multi-sensor fusion and ethical considerations in 

deploying UAV technology for HEC management. In conclusion, the paper underscores the 

significance of CNN-based object detection in UAV TIR videos for emergency response in HEC 

situations, and the need for ongoing innovation and collaboration to mitigate human-elephant conflict 

effectively. 
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Introduction  

The continuous struggle for territory and resources between people and wild elephants is 

known as the "Human Elephant Conflict" (HEC) (Castaldo-Walsh, 2019). As populations 

grow, agricultural and other land activities encroach on natural habitats, and elephants 

frequently enter farmland in search of food, causing damage to crops and properties (George 

Wittemyer, 2008; Naughton-Treves, 2010; Nyhus, 2016). In response, farmers may use 

harmful methods to deter elephants, resulting in reactive actions from elephants and escalating 

conflict.  
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According to studies, Sri Lankan Forest Elephants, a distinct subspecies of the Asian elephant, 

prefer to hide in places that are difficult to see during the day, such as bushes and miniature 

forests. They are more active in open areas at night (Fernando et al., 2021). In the context of 

HEC, Unmanned Aerial Vehicles (UAVs) equipped with Infrared (IR) cameras can be used to 

detect elephants in human settlements or agricultural areas. Early detection allows authorities 

to respond quickly and prevent conflicts. The IR imagery assists in tracking elephant 

movements, understanding their behaviour, and deploying appropriate interventions.  

UAVs equipped with thermal infrared (TIR) cameras provide a unique advantage for efforts to 

mitigate HEC. These drones enhance early detection and intervention by offering aerial 

surveillance capabilities, enabling prompt responses to potential conflict situations. 

Nevertheless, the success of using UAVs for monitoring depends heavily on the precision and 

speed of the object detection algorithms used to analyse the real-time TIR videos.  

This review paper analyses the integration of Convolutional Neural Network (CNN) 

algorithms in TIR video streaming to detect objects, specifically focusing on elephants and 

humans. The paper comprehensively explores existing research and technologies and aims to 

understand the critical areas of state-of-the-art methodologies, challenges, and future 

directions.  

Furthermore, the paper will examine the landscape of object detection techniques in UAV 

images and videos, ranging from conventional methods to cutting-edge CNN-based 

approaches. Special attention will be given to the nuances of TIR imagery, including its low 

resolution, noise, and variable environmental conditions, which pose unique challenges for 

accurate detection. 

 

Background and Related Work 

HEC mitigation has long been challenging in regions such as Sri Lanka, where humans' and 

elephants' habitats intersect. Traditional mitigation methods, including physical barriers, 

trenches, and deterrents such as noise-making devices, have proven effective to some extent 

(Hoare, 1999). However, these traditional methods often fail to provide comprehensive 

solutions, mainly when elephant movement patterns are unpredictable or when conflicts arise 

in remote areas. This highlights the need for more advanced and adaptable solutions, such as 

UAV-based surveillance.  

Technological advancements have offered new avenues for addressing HEC in recent years, 

with UAVs emerging as a promising real-time monitoring and management tool (Gonzalez et 
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al., 2016; Witczuk et al., 2018). UAVs equipped with TIR cameras have gained traction due to 

their ability to provide aerial surveillance capabilities, enabling early detection of elephant 

herds and human activities even in challenging terrain and lighting conditions.  

The literature on HEC mitigation reflects a transition from reliance on traditional methods 

towards a more technology-driven approach, with UAV surveillance playing a pivotal role. 

Studies have demonstrated the effectiveness of UAVs in reducing response times to conflict 

incidents, enabling rapid deployment of intervention strategies, and minimising human-

elephant confrontations. 

a. Human Elephant Conflict 

HEC in Sri Lanka is a complex and pressing issue with significant socioeconomic and 

environmental implications. The escalating conflict results from the intersection of human 

encroachment into traditional elephant habitats (Fernando, 2015; Fernando et al., 2021), habitat 

fragmentation (Köpke et al., 2021; Shaffer et al., 2019), and the elephants' natural migration 

patterns (Anuradha et al., 2019). As populations grow and human activities such as agriculture 

and settlements encroach on wildlife territories, the elephants are frequently forced to enter 

human settlements and farmland in search of food and water, increasing the likelihood of 

confrontations (Tiller et al., 2021).  

Conflicts between humans and elephants often negatively affect communities and wildlife. On 

the one hand, communities suffer significant economic losses due to crop damage, 

infrastructure destruction, and even human casualties (Leimgruber et al., 2011; Santiapillai et 

al., 2010). Conversely, elephants face retaliatory killings, habitat loss, and injury due to human 

conflict (Billah et al., 2021; Das et al., 2014; Sitati et al., 2003). In this context, novel conflict 

resolution strategies are required to be introduced to mitigate the HEC.  

In the emergency response to HEC, deploying UAVs equipped with TIR cameras appears to 

be a promising technological intervention (Akula et al., 2014; D’Acremont et al., 2019; 

Nasrabadi, 2019). The unique topography and vegetation of Sir Lanka challenge the traditional 

surveillance methods, making UAVs a practical and versatile tool for monitoring large and 

inaccessible areas. The TIR technology is advantageous because it detects thermal signatures, 

allowing elephants to be identified even in low-light conditions. 

b. Traditional Object Detection Method 

Due to CNN algorithm improvements, Object detection in images and videos has become a 

prominent field of study that has advanced significantly in recent years. Further, traditional 

methods were extensively used in object detection in images in early 2000, and they evolved 
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with time in significant accuracy. In 2004, Viola–Jones (VJ) object detector(Viola & Jones, 

2004) utilised a boosted cascade of simple features to achieve high accuracy and fast 

processing on face detection.  

Further, Histograms of Oriented Gradients (HOG)(Dalal et al., 2005) features capture local 

gradient information to represent the appearance and shape of humans, and it achieves state-

of-the-art results in human detection, demonstrating its effectiveness in various challenging 

scenarios. When it considers object detection using Deformable Part Models 

(DPM)(Felzenszwalb et al., 2008) in a cascade framework, it introduces a more flexible model 

incorporating parts with varying spatial relationships, enhancing the representation of complex 

objects. Since the traditional deep learning object detection method is reaching its upper limits, 

the requirement arises for a new system to identify the object more accurately.  

c. Deep Learning-Based Object Detection Methods 

In 2012, Krizhevsky, Sutskever and Hinton developed a ground-breaking image classification 

approach using deep CNNs. The authors train a large-scale CNN architecture called AlexNet 

on the ImageNet dataset, significantly improving classification accuracy. They introduced 

innovations such as Rectified Linear Units (ReLU), data augmentation, dropout regularisation, 

and GPU acceleration (Krizhevsky et al., 2012).  

 Source: Mittal et al., 2020; Wu et al., 2020 

Figure 1: CNN-based object detection methods 
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The study demonstrates the power of deep CNNs in learning hierarchical features directly from 

raw pixels, enabling advanced performance on the challenging ImageNet dataset. The paper's 

contributions have revolutionised computer vision and deep learning, paving the way for 

subsequent advancements in image recognition tasks. After more than a decade, CNN-based 

object detection algorithms have become more advanced compared to previous studies. 

Considering the development of CNN-based object detection algorithms, these algorithms can 

be categorised into three groups. 

• Two-Stage detectors 

• One-Stage detectors 

• Advanced detectors 

✓ Two-Stage detectors 

Two-stage detectors perform object detection by sequentially processing images in two 

stages, starting with a coarser analysis and then refining it to achieve higher accuracy 

in the algorithm. Two-stage object detection algorithms employ a multi-step 

methodology. During the initial phase, they suggest potential regions of objects using 

a Region Proposal Network (RPN) or a comparable mechanism. The proposed regions 

undergo classification and refinement in the second stage to achieve the final object 

detection.  

The development of object detection frameworks has seen significant advancements, 

with essential contributions such as the Region-based Convolutional Neural Network 

(R-CNN) (Girshick et al., 2014), which introduced a two-stage process using selective 

search for Region Proposals and CNNs for feature extraction and classification. Spatial 

Pyramid Pooling (SPPNet) (He et al., 2014) improved deep convolutional networks' 

performance by enabling the processing of random-sized images and producing fixed-

length feature vectors. Fast R-CNN (Girshick, 2015)streamlined the process by 

unifying object classification and bounding box regression in a single-stage network, 

introducing the Region of Interest (RoI) pooling layer for efficient feature map 

extraction. Building upon this, Faster R-CNN (Ren et al., 2015) introduced Region 

Proposal Networks (RPN) to generate high-quality proposals, removing the need for 

external methods. Mask R-CNN (He et al., 2017)extended Faster R-CNN by 

incorporating a parallel branch for pixel-level object mask prediction, allowing 

accurate segmentation.  
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Deformable Convolutional Networks (DCN) (Dai et al., 2017) introduced adaptive 

receptive fields, handling geometric variations effectively. Feature Pyramid Network 

(FPN) (Lin, Dollár, et al., 2017) incorporated squeeze-and-excitation modules for real-

time object detection, while Deformable ConvNets v2 (Zhu et al., 2019)enhanced 

spatial transformation handling. NAS-FPN (Ghiasi et al. Brain, 2019) utilised neural 

architecture search for optimal feature pyramid generation. Deformable DETR (Zhu et 

al., 2020) employed deformable transformers for flexible object structure modelling, 

and UFOD (UFOD – an open-source library) provided a user-friendly interface for 

automated model selection and hyperparameter optimisation (García-Domínguez et al., 

2021). Sparse R-CNN (Sun et al., 2021) innovatively combined proposal generation 

and detection stages, utilising sparse convolutional layers for adaptive sparse proposals 

and reduced computational burden. 

✓ One-Stage Detectors  One-stage object detection algorithms perform object 

detection in a ‘single step’ without requiring explicit region proposal. They directly 

predict object locations and classes on a dense grid of candidate bounding boxes, 

reducing the computational time in object detection.  

You Only Look Once (YOLO) (Redmon et al., 2016), a one-stage detector, 

revolutionised object detection by treating it as a single regression problem. It 

accomplished remarkable speed and accuracy by predicting bounding boxes and class 

probabilities in a single network pass. Single Shot Multibox Detector (SSD) (W. Liu et 

al., 2015) excels in real-time detection through multi-scale feature maps and anchor 

boxes, providing accurate results across different object scales and aspect ratios. 

RetinaNet (Lin, Goyal, et al., 2017) addressed class imbalance using focal loss, 

focusing on challenging instances and reducing the dominance of well-classified 

backgrounds. SqueezeDet (B. Wu et al., 2017) introduced a compact and efficient fully 

convolutional network with squeeze-and-excitation modules for real-time object 

detection in autonomous driving scenarios.  

CenterNet (Duan et al., 2019)innovatively represents objects as single points, 

enhancing computation speed and localisation accuracy. At the same time, FCOS (Tian 

et al., 2019) adopts a fully convolutional design, eliminating anchor boxes and 

introducing a novel focal loss for precise object localisation. EfficientDet (Mingxing et 

al. Le, 2020) employs compound scaling to optimise architecture, resolution, and depth, 

covering various resource limitations. YOLOv5 (L. Jiang et al., 2022), designed for 
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traffic sign detection, incorporates a balanced feature pyramid network and attention 

modules to enhance multi-scale feature capture and improve accuracy. Each framework 

uniquely contributes to the evolution of object detection methodologies. 

✓ Advanced Detectors  Advanced detectors include state-of-the-art object 

detection algorithms incorporating improvements over the basic two-stage and one-

stage methods. These advancements can involve better backbone architectures, more 

efficient feature extraction techniques, or new object localisation and recognition 

strategies.  

In object detection, innovative approaches have emerged to redefine the traditional 

bounding box model. For example, CornerNet (Mingxing et al. Le, 2019) breaks away 

from conventional bounding boxes by directly predicting object corners as keypoints, 

employing a unique corner pooling technique and keypoint estimation method for 

improved accuracy and robustness. Similarly, the Point methodology treats objects as 

single points (Zhou et al., 2019), removing the complexity of bounding boxes, and 

utilises keypoint detection to regress object centres, resulting in significantly improved 

detection accuracy and efficiency. The CenterNet framework, introduced within this 

context, achieves state-of-the-art performance on various benchmarks while 

maintaining real-time performance. CornerNet-Lite (Law et al., 2019) improves this 

concept by focusing on efficiency, representing objects as keypoints, and employing a 

two-step keypoint regression process to achieve comparable performance while 

reducing computational complexity.  

Another notable advancement is FoveaBox (Kong et al., 2020), which deviates from 

anchor-based approaches and uses a focal region-based strategy to enhance object 

localisation and recognition. FoveaBox outperforms anchor-based models using a 

multi-level feature fusion scheme and the novel concept of ‘foveation’, demonstrating 

its potential to revolutionise object detection by providing a more effective alternative. 

Collectively, these novel approaches contribute to the ongoing evolution of object 

detection methodologies, with the promise of improved accuracy and efficiency in a 

wide range of practical applications. 

 

Object Detection Algorithms in TIR Videos 

Object detection in UAV TIR videos presents unique challenges due to the distinct 

characteristics of thermal imagery, such as low resolution, complex image background, high 
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noise levels, long imaging distance, variable environmental conditions, flight angles, and lack 

of publicly labelled datasets and TIR detection for multiple scenes and objects (C. Jiang et al., 

2022). Despite the challenges, in recent years, CNN algorithms have shown promising results 

in addressing these challenges and facilitating accurate detection of objects, including humans 

and elephants, in TIR videos captured by UAVs.  

Various CNN-based algorithms have been developed and adapted specifically for object 

detection in TIR imagery. These algorithms utilise deep learning architectures to autonomously 

acquire distinguishing characteristics from unprocessed TIR data, facilitating strong detection 

capabilities under challenging situations. In this section, we explore some of the prominent 

CNN-based algorithms tailored for object detection in TIR videos: 

✓ YOLO 

In 2016, Redmon et al. introduced YOLO algorithms, a popular real-time object 

detection algorithm known for its efficiency and accuracy. The YOLO architecture 

divides the input image into a grid and predicts bounding boxes and class probabilities 

directly from the whole image in a single forward pass of the network. This approach 

enables YOLO to achieve real-time performance, making it well-suited for applications 

such as UAV-based monitoring of human-elephant conflict in TIR videos. 

✓ SSD 

SSD is another real-time object detection algorithm introduced by W. Liu et al. in 2015 

that predicts multiple bounding boxes and class probabilities at different scales and 

aspect ratios within a single network architecture. By incorporating feature maps from 

multiple convolutional layers, SSD achieves robustness to object scale variations and 

maintains high detection accuracy across different object sizes. This makes SSD 

particularly suitable for detecting elephants and humans in TIR videos captured by 

UAVs. 

✓ Faster R-CNN 

In 2015, Ren et al. introduced Faster R-CNN is a two-stage object detection framework 

that first generates region proposals using a Region Proposal Network (RPN) and then 

refines these proposals through a separate network for classification and bounding box 

regression. While slightly slower than YOLO and SSD, Faster R-CNN offers superior 

accuracy and localisation precision (ref table 01). It is well-suited for scenarios where 

precision is paramount, such as identifying small objects or distinguishing between 

similar classes. 
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Table 01: Comparison of Precision over Speed 

Algorithm Data Set 
Mean Average 

Precision (mAP) 

Speed (Frames per 

Second) 

YOLO 

VOC-2012 

63.4% 45 FPS 

SSD 
SSD300 74.3% 59 FPS 

SSD500 76.9% 22 FPS 

Fast RCNN’s 73.2% 7 FPS 

Source: Murthy et al., 2020 

These CNN-based algorithms have shown significant advancements in object detection 

accuracy and efficiency in TIR videos, laying the foundation for improved monitoring and 

management of human-elephant conflict using UAV technology. However, each algorithm has 

its strengths and weaknesses, and the choice of algorithm depends on factors such as 

computational resources, real-time processing requirements, and the specific characteristics of 

the HEC management scenario. 

 

Integration Of CNN Algorithms in UAV Systems 

Integrating CNN algorithms for object detection into UAV systems is a critical step towards 

real-time monitoring and management of HEC. However, this integration poses several 

challenges related to computational efficiency, onboard processing capabilities, and TIR video 

streaming optimisation. In this section, we discuss the considerations and strategies for 

effectively integrating CNN algorithms into UAV systems for HEC management: 

✓ Computational Efficiency: CNN-based object detection algorithms can be 

computationally intensive, requiring substantial processing power to perform real-time 

inference on streaming TIR videos. To address this challenge, researchers have 

explored techniques such as model quantisation (Z. Liu et al., n.d.), network pruning 

(Habib et al., n.d.), and hardware acceleration (Du et al., 2024) using specialised 

processing units (e.g., GPUs or FPGAs) to optimise the computational efficiency of 

CNN algorithms on UAV platforms. Additionally, designing lightweight CNN 

architectures optimised for resource-constrained environments can improve the 

computational efficiency of object detection in UAV systems. 

✓ Onboard Processing Capabilities: UAVs often have limited onboard processing 

capabilities, so developing efficient algorithms and architectures for real-time object 

detection is necessary. By leveraging distributed processing techniques and parallel 

computing frameworks, such as CUDA or OpenCL, UAV systems can harness the 
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computational power of onboard hardware components to accelerate CNN inference 

tasks (Jordà et al., 2021). Moreover, deploying hybrid approaches that combine 

onboard and offboard processing can improve resource utilisation while maintaining 

low-latency performance in HEC management scenarios. 

✓ Optimization for TIR Video Streaming: TIR videos captured by UAVs have 

distinct characteristics, such as low resolution, high noise levels, and variable 

environmental conditions, which make challenges for object detection algorithms. 

Researchers have explored data augmentation techniques, domain adaptation 

strategies, and transfer learning approaches to optimise CNN algorithms for TIR video 

streaming to improve model robustness and generalisation capabilities in diverse 

environmental conditions (Zoph et al., 2019). Additionally, integrating sensor fusion 

techniques, such as combining TIR imagery with visual or LiDAR data, can improve 

the accuracy and reliability of object detection in UAV systems for HEC management. 

By addressing these challenges and considerations, integrating CNN algorithms into UAV 

systems can significantly enhance the effectiveness of HEC mitigation efforts. Real-time 

monitoring and early detection of human and elephant presence enable proactive intervention 

strategies, such as alerting local authorities or deploying deterrents, to prevent conflicts and 

minimise risks to both human and elephant populations.  

 

Evaluation Metrics and Performance Analysis 

Assessing object detection algorithms' performance in UAV-based HEC monitoring requires 

appropriate evaluation metrics and comprehensive performance analysis. In this section, we 

describe the metrics commonly used to evaluate object detection algorithms, conduct a 

comparative study of three different CNN algorithms, namely YOLO, SSD, and Faster R-

CNN, and discuss the trade-offs between accuracy and processing speed in the context of 

emergency response requirements. Evaluating object detection algorithms involves several key 

metrics that help determine their performance and effectiveness. Here are four commonly used 

metrics: 

✓ Evaluation Metrics: 

• Precision: The ratio of correctly predicted positive observations to the total 

predicted positives. It indicates how many of the detected objects are actually 

relevant. 
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• Recall:  The ratio of correctly predicted positive observations to all 

observations in the actual class. It measures the algorithm’s ability to detect all 

relevant objects. 

• F1 Score: The harmonic mean of precision and recall. It provides a single 

metric that balances both precision and recall. 

• Intersection over Union (IoU): Measures the overlap between the 

predicted and ground truth bounding boxes. Higher IoU indicates better 

localisation accuracy. 

Table 02: A comparison of the evaluation metrics with CNN algorithms 

CNN 

Algorithm 
Precision Recall F1 Score IoU 

YOLO High precision 

Lower 

compared to 

other 

algorithms 

Higher than 

YOLO 

Performs 

well 

SSD 

Good balance 

between precision 

and recall 

SSD has better 

recall compared 

to YOLO 

Generally higher 

than YOLO 

Achieves 

good IoU 

Faster R-

CNN 
High precision High Recall 

The highest 

among these three 

algorithms 

Excels in 

IoU 

 

✓ Performance Analysis: 

• Comparative Analysis: A comparative analysis of different CNN 

algorithms, such as YOLO, SSD, and Faster R-CNN, evaluates their 

performance across various metrics on HEC-related datasets and real-world 

scenarios (ref Table 01). This analysis reveals the strengths and weaknesses of 

each algorithm in detecting humans and elephants in thermal infrared (TIR) 

videos captured by UAVs. 

• Real-world Scenario Evaluation: Evaluating the performance of object 

detection algorithms in real-world HEC management scenarios involves 

deploying integrated UAV systems equipped with CNN algorithms and 

evaluating their effectiveness in detecting and tracking relevant objects in 

streaming TIR videos. This evaluation considers detection accuracy, false 
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positive rates, and processing speed under different environmental and 

operational constraints. 

 

Table 03: A comparative study of CNN algorithms used for object detection 

CNN 

Algorithm 
Strengths Weaknesses Use Cases 

YOLO 

Real-time 

detection, high 

speed, and 

efficiency 

Lower accuracy 

compared to some 

other models, 

especially for small 

objects 

Applications requiring 

real-time detection, such 

as autonomous driving 

and surveillance 

SSD 

A balance between 

speed and accuracy, 

efficient multi-scale 

feature maps 

Slightly lower 

accuracy than Faster 

R-CNN 

Applications needing a 

good trade-off between 

speed and accuracy, like 

mobile and embedded 

systems 

Faster R-CNN 

High accuracy and 

robust performance 

for various object 

sizes 

Slower inference 

time compared to 

YOLO 

Scenarios where accuracy 

is more critical than 

speed, such as medical 

imaging and detailed 

image analysis 

 

✓ Trade-offs between Accuracy and Processing Speed: Balancing accuracy and 

processing speed is crucial in emergency response situations, where early detection and 

intervention are critical. While Faster R-CNN may offer higher accuracy, they often 

require more computational resources and have longer inference times than faster 

algorithms like YOLO and SSD. Therefore, selecting the most suitable algorithm 

depends on the specific requirements of the HEC management scenario, considering 

factors such as response time, resource availability, and detection performance trade-

offs.  

Researchers and practitioners can gain valuable insights into the effectiveness of object 

detection algorithms in UAV-based HEC monitoring by using appropriate evaluation metrics 

and conducting a thorough performance analysis. This analysis informs decision-making 

processes and makes it easier to select and optimise algorithms for real-world deployment, 

ultimately contributing to successfully mitigating human-elephant conflict and promoting 

coexistence between humans and elephants in conflict-prone regions. 
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Future Directions and Challenges 

Several future directions and challenges emerge as the object detection field in UAV-based 

monitoring of HEC continues to evolve, offering new opportunities for innovation and 

advancement. In this section, we identify emerging trends, potential advancements, and critical 

challenges in object detection technology for HEC mitigation: 

✓ Trends  

• Multi-Sensor Fusion:  Integrating data from multiple sensors, such as 

TIR cameras, visual cameras, and LiDAR sensors, can potentially improve the 

accuracy and reliability of object detection algorithms in diverse environmental 

conditions. Researchers can overcome limitations inherent in individual sensors 

and improve the robustness of detection systems in challenging scenarios, such 

as dense foliage or adverse weather conditions, by combining information from 

various sensor systems. 

• Semi-supervised Learning: Semi-supervised learning techniques can help 

train object detection algorithms with limited annotated data, often a bottleneck 

in HEC management applications. Semi-supervised learning algorithms can 

effectively bootstrap the training process and improve detection performance 

by combining a small amount of labelled data with a large pool of unlabelled 

data, especially when collecting large, labelled datasets, which is impractical or 

prohibitively expensive. 

• Adaptive Algorithms for Dynamic Environments: Developing adaptive 

object detection algorithms that dynamically adjust their parameters and 

strategies in response to changing environmental conditions and operational 

requirements is essential for real-world deployment in dynamic HEC scenarios. 

Adaptive algorithms can automatically optimise their performance in response 

to changes in terrain, vegetation density, and animal behaviour, increasing their 

effectiveness and adaptability in monitoring and managing human-elephant 

conflict. 

✓ Challenges 

• Ethical and Practical Considerations: Deploying AI-based UAVs for 

wildlife management and emergency response raises ethical and practical 

concerns about privacy, data security, and community engagement. 
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Transparency, accountability, and stakeholder participation in developing and 

deploying UAV-based solutions are critical for establishing trust and addressing 

potential concerns among local communities and conservation stakeholders. 

• Scalability and Generalization: Scalability and generalisation of object 

detection algorithms across diverse geographical regions, elephant populations, 

and environmental conditions remain significant challenges. Developing 

algorithms that can generalise effectively to new environments and elephant 

behaviours while maintaining high detection accuracy is essential for the 

widespread adoption and long-term viability of UAV-based HEC mitigation 

strategies. 

• Regulatory and Policy Frameworks:  Navigating regulatory and policy 

frameworks that govern the use of UAVs in wildlife management and 

conservation presents logistical and legal challenges. Establishing clear 

guidelines, protocols, and regulations for the ethical and responsible 

deployment of UAVs in HEC mitigation efforts is essential for ensuring 

compliance with local regulations, wildlife protection, and protecting human 

rights. 

Addressing these challenges and capitalising on emerging trends in object detection technology 

will pave the way for innovative solutions to human-elephant conflict and promote long-term 

coexistence between humans and elephants in conflict-prone areas.  

 

Conclusion 

To summarise, integrating CNN algorithms into UAV video streaming represents a 

transformative approach in addressing the complex challenges of HEC mitigation. Researchers 

and practitioners have made significant progress in improving the effectiveness of real-time 

monitoring and management strategies in conflict-prone areas by leveraging advanced 

technologies and innovative methodologies.  

This review has explored the evolution of CNN algorithms from traditional to deep-learning 

object detection methods and further elaborated on the two-stage, one-stage, and advanced 

deep-learning methods used in the present-day context. Moreover, the role of CNN-based 

algorithms, such as YOLO, SSD, and Faster R-CNN, has been discussed, enabling accurate 

and efficient detection of humans and elephants in challenging environmental conditions.  
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Furthermore, the considerations and challenges associated with integrating CNN algorithms 

into UAV systems, such as computational efficiency, onboard processing capabilities, and 

optimisation for TIR video streaming, have been investigated. Also, Researchers can improve 

the scalability, adaptability, and effectiveness of UAV-based HEC mitigation strategies by 

addressing these challenges and utilising emerging technologies. 

It is imperative to continue developing object detection technology for HEC management 

while considering ethical, regulatory, and policy considerations. By promoting 

interdisciplinary collaborations, encouraging stakeholder engagement, and embracing 

responsible deployment practices, it can develop holistic solutions prioritising wildlife 

conservation, human safety, and community well-being.  

In conclusion, this review emphasises the importance of CNN-based object detection in UAV 

TIR video streaming for addressing human-elephant conflict. By leveraging technology and 

innovation, we can pave the way for long-term coexistence between humans and elephants, 

ensuring a brighter future for both species and the ecosystems they inhabit. 

 

Reference 

Akula, A., Khanna, N., Ghosh, R., Kumar, S., Das, A., & Sardana, H. K. (2014). Adaptive 

contour-based statistical background subtraction method for moving target detection in 

infrared video sequences. Infrared Physics and Technology, 63, 103–109. 

https://doi.org/10.1016/j.infrared.2013.12.012 

Anuradha, J. M. P. N., Fujimura, M., Inaoka, T., & Sakai, N. (2019). The role of agricultural 

land use pattern dynamics on elephant habitat depletion and human-elephant conflict in Sri 

Lanka. Sustainability (Switzerland), 11(10). https://doi.org/10.3390/su11102818 

Billah, M. M., Rahman, M. M., Abedin, J., & Akter, H. (2021). Land cover change and its 

impact on human–elephant conflict: a case from Fashiakhali forest reserve in Bangladesh. SN 

Applied Sciences, 3(6). https://doi.org/10.1007/s42452-021-04625-1 

Castaldo-Walsh, C. (2019). NSUWorks Human-Wildlife Conflict and Coexistence in a More-

than-Human World: A Multiple Case Study Exploring the Human-Elephant-Conservation 

Nexus in Namibia and Sri Lanka. https://nsuworks.nova.edu/shss_dcar_etd 

D’Acremont, A., Fablet, R., Baussard, A., & Quin, G. (2019). CNN-based target recognition 

and identification for infrared imaging in defense systems. Sensors (Switzerland), 19(9). 

https://doi.org/10.3390/s19092040 



                                                             Asian Conference on Remote 

Sensing (ACRS 2024)  

Page 16 of 20 

Dai, J., Qi, H., Xiong, Y., Li, Y., Zhang, G., Hu, H., & Wei, Y. (2017). Deformable 

Convolutional Networks. https://github.com/ 

Dalal, N., Histograms, B. T., & Triggs, B. (2005). Histograms of Oriented Gradients for 

Human Detection. 886–893. https://doi.org/10.1109/CVPR.2005.177ï 

Das, B. J., Saikia, B. N., Baruah, K. K., Bora, A., & Bora, M. (2014). Nutritional evaluation of 

fodder, its preference and crop raiding by wild Asian elephant (Elephas maximus) in Sonitpur 

district of Assam, India. Veterinary World, 7(12), 1082–1089. 

https://doi.org/10.14202/vetworld.2014.1082-1089 

Du, D., Gong, G., & Chu, X. (2024). Model Quantization and Hardware Acceleration for 

Vision Transformers: A Comprehensive Survey. http://arxiv.org/abs/2405.00314 

Duan, K., Bai, S., Xie, L., Qi, H., Huang, Q., & Tian, Q. (2019). CenterNet: Keypoint Triplets 

for Object Detection. https://github.com/ 

Felzenszwalb, P. F., Girshick, R. B., & Mcallester, D. (2008). Cascade Object Detection with 

Deformable Part Models *. 

Fernando, P. (2015). Managing elephants in Sri Lanka: where we are and where we need to be. 

Ceylon Journal of Science (Biological Sciences), 44(1), 1–11. 

https://doi.org/10.4038/cjsbs.v44i1.7336 

Fernando, P., De Silva, M. K. C. R., Jayasinghe, L. K. A., Janaka, H. K., & Pastorini, J. (2021). 

First country-wide survey of the Endangered Asian elephant: Towards better conservation and 

management in Sri Lanka. ORYX, 55(1), 46–55. https://doi.org/10.1017/S0030605318001254 

García-Domínguez, M., Domínguez, C., Heras, J., Mata, E., & Pascual, V. (2021). UFOD: An 

AutoML framework for the construction, comparison, and combination of object detection 

models. Pattern Recognition Letters, 145, 135–140. 

https://doi.org/10.1016/j.patrec.2021.01.022 

George Wittemyer, P. E. W. T. B. A. C. O. B. J. S. B. (2008). Accelerated Human Population 

Growth at Protected Area Edges. Science, 321(5885), 123–126. 

https://doi.org/10.1126/science.1154449 

Ghiasi, G., Lin, T.-Y., & Le Google Brain, Q. V. (2019). NAS-FPN: Learning Scalable Feature 

Pyramid Architecture for Object Detection. 

Girshick, R. (2015). Fast R-CNN. https://github.com/rbgirshick/ 

Girshick, R., Donahue, J., Darrell, T., & Malik, J. (2014). Rich feature hierarchies for accurate 

object detection and semantic segmentation. http://arxiv. 



                                                             Asian Conference on Remote 

Sensing (ACRS 2024)  

Page 17 of 20 

Gonzalez, L. F., Montes, G. A., Puig, E., Johnson, S., Mengersen, K., & Gaston, K. J. (2016). 

Unmanned aerial vehicles (UAVs) and artificial intelligence revolutionizing wildlife 

monitoring and conservation. Sensors (Switzerland), 16(1). https://doi.org/10.3390/s16010097 

Habib, G., Saleem, J., & Lall, B. (n.d.). Knowledge Distillation in Vision Transformers: A 

Critical Review. 

He, K., Gkioxari, G., Dollár, P., & Girshick, R. (2017). Mask R-CNN. 

He, K., Zhang, X., Ren, S., & Sun, J. (2014). Spatial Pyramid Pooling in Deep Convolutional 

Networks for Visual Recognition. https://doi.org/10.1007/978-3-319-10578-9_23 

Hoare, R. E. (1999). Determinants of human-elephant conflict in a land-use mosaic. Journal 

of Applied Ecology, 36(5), 689–700. https://doi.org/10.1046/j.1365-2664.1999.00437.x 

Jiang, C., Ren, H., Ye, X., Zhu, J., Zeng, H., Nan, Y., Sun, M., Ren, X., & Huo, H. (2022). 

Object detection from UAV thermal infrared images and videos using YOLO models. 

International Journal of Applied Earth Observation and Geoinformation, 112. 

https://doi.org/10.1016/j.jag.2022.102912 

Jiang, L., Liu, H., Zhu, H., & Zhang, G. (2022). Improved YOLO v5 with balanced feature 

pyramid and attention module for traffic sign detection. MATEC Web of Conferences, 355, 

03023. https://doi.org/10.1051/matecconf/202235503023 

Jordà, M., Valero-Lara, P., & Peña, A. J. (2021). cuConv: A CUDA Implementation of 

Convolution for CNN Inference. https://doi.org/10.1007/s10586-021-03494-y 

Kong, T., Sun, F., Liu, H., Jiang, Y., Li, L., & Shi, J. (2020). FoveaBox: Beyound Anchor-

Based Object Detection. IEEE Transactions on Image Processing, 29, 7389–7398. 

https://doi.org/10.1109/TIP.2020.3002345 

Köpke, S., Withanachchi, S. S., Pathiranage, R., Withanachchi, C. R., Udayakanthi, T. G. D., 

Nissanka, N. M. T. S., Warapitiya, C., Nissanka, L. N. A. B. M., Ranasinghe, R. A. N. N., 

Senarathna, T. M. C. D., Schleyer, C., & Thiel, A. (2021). Human—elephant conflict in Sri 

Lanka: A critical review of causal explanations. Sustainability (Switzerland), 13(15). 

https://doi.org/10.3390/su13158625 

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). ImageNet classification with deep 

convolutional neural networks. Communications of the ACM, 60(6), 84–90. 

https://doi.org/10.1145/3065386 

Law, H., Teng, Y., Russakovsky, O., & Deng, J. (2019). CornerNet-Lite: Efficient Keypoint 

Based Object Detection. http://arxiv.org/abs/1904.08900 



                                                             Asian Conference on Remote 

Sensing (ACRS 2024)  

Page 18 of 20 

Leimgruber, P., Oo, Z. M., Aung, M., Kelly, D. S., Wemmer, C., Senior, B., & Songer, M. 

(2011). Current Status of Asian Elephants in Myanmar. In Gajah (Vol. 35). 

Lin, T.-Y., Dollár, P., Girshick, R., He, K., Hariharan, B., & Belongie, S. (2017). Feature 

Pyramid Networks for Object Detection. 

Lin, T.-Y., Goyal, P., Girshick, R., He, K., & Dollár, P. (2017). Focal Loss for Dense Object 

Detection. 

Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.-Y., & Berg, A. C. (2015). SSD: 

Single Shot MultiBox Detector. https://doi.org/10.1007/978-3-319-46448-0_2 

Liu, Z., Wang, Y., Han, K., Zhang, W., Ma, S., & Gao, W. (n.d.). Post-Training Quantization 

for Vision Transformer. https://gitee.com/mindspore/models/tree/master/research/cv/VT- 

Mingxing Tan, Ruoming Pang, & Quoc V. Le. (2020). EfficientDet: Scalable and Efficient 

Object Detection. https://github.com/google/ 

Mittal, P., Singh, R., & Sharma, A. (2020). Deep learning-based object detection in low-altitude 

UAV datasets: A survey. In Image and Vision Computing (Vol. 104). Elsevier Ltd. 

https://doi.org/10.1016/j.imavis.2020.104046 

Murthy, C. B., Hashmi, M. F., Bokde, N. D., & Geem, Z. W. (2020). Investigations of object 

detection in images/videos using various deep learning techniques and embedded platforms-A 

comprehensive review. In Applied Sciences (Switzerland) (Vol. 10, Issue 9). MDPI AG. 

https://doi.org/10.3390/app10093280 

Nasrabadi, N. M. (2019). DeepTarget: An Automatic Target Recognition Using Deep 

Convolutional Neural Networks. IEEE Transactions on Aerospace and Electronic Systems, 

55(6), 2687–2697. https://doi.org/10.1109/TAES.2019.2894050 

Naughton-Treves, L. (2010). Farming the forest edge: vulnerable places and people around 

Kibale national park, Uganda. Geographical Review, 87(1), 27–46. 

https://doi.org/10.1111/j.1931-0846.1997.tb00058.x 

Nyhus, P. J. (2016). Human-Wildlife Conflict and Coexistence. Annual Review of Environment 

and Resources, 41, 143–171. https://doi.org/10.1146/annurev-environ-110615-085634 

Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You Only Look Once: Unified, 

Real-Time Object Detection. http://pjreddie.com/yolo/ 

Ren, S., He, K., Girshick, R., & Sun, J. (2015). Faster R-CNN: Towards Real-Time Object 

Detection with Region Proposal Networks. https://github.com/ 



                                                             Asian Conference on Remote 

Sensing (ACRS 2024)  

Page 19 of 20 

Santiapillai, C., Wijeyamohan, S., Bandara, G., Athurupana, R., Dissanayake, N., & Read, B. 

(2010). An assessment of the human-elephant conflict in Sri Lanka. In J. Sci. (Bio. Sci.) (Vol. 

39, Issue 1). 

Shaffer, L. J., Khadka, K. K., Van Den Hoek, J., & Naithani, K. J. (2019). Human-elephant 

conflict: A review of current management strategies and future directions. In Frontiers in 

Ecology and Evolution (Vol. 6, Issue JAN). Frontiers Media S.A. 

https://doi.org/10.3389/fevo.2018.00235 

Sitati, N. W., Walpole, M. J., Smith, R. J., & Leader-Williams, N. (2003). Predicting spatial 

aspects of human-elephant conflict. Journal of Applied Ecology, 40(4), 667–677. 

https://doi.org/10.1046/j.1365-2664.2003.00828.x 

Sun, P., Zhang, R., Jiang, Y., Kong, T., Xu, C., Zhan, W., Tomizuka, M., Li, L., Yuan, Z., Wang, 

C., & Luo, P. (2021). Sparse R-CNN: End-to-End Object Detection with Learnable Proposals. 

https://github.com/PeizeSun/SparseR-CNN 

Tian, Z., Shen, C., Chen, H., & He, T. (2019). FCOS: Fully Convolutional One-Stage Object 

Detection. 

Tiller, L. N., Humle, T., Amin, R., Deere, N. J., Lago, B. O., Leader-Williams, N., Sinoni, F. 

K., Sitati, N., Walpole, M., & Smith, R. J. (2021). Changing seasonal, temporal and spatial 

crop-raiding trends over 15 years in a human-elephant conflict hotspot. Biological 

Conservation, 254. https://doi.org/10.1016/j.biocon.2020.108941 

Viola, P., & Jones, M. (2004). Merl-a Mitsubishi electric research laboratory Rapid Object 

Detection Using a Boosted Cascade of Simple Features Rapid Object Detection using a 

Boosted Cascade of Simple Features. http://www.merl.com 

Witczuk, J., Pagacz, S., Zmarz, A., & Cypel, M. (2018). Exploring the feasibility of unmanned 

aerial vehicles and thermal imaging for ungulate surveys in forests - preliminary results. 

International Journal of Remote Sensing, 39(15–16), 5504–5521. 

https://doi.org/10.1080/01431161.2017.1390621 

Wu, B., Iandola, F., Jin, P. H., & Keutzer, K. (2017). SqueezeDet: Unified, Small, Low Power 

Fully Convolutional Neural Networks for Real-Time Object Detection for Autonomous 

Driving. https://blogs.nvidia.com/blog/2016/09/28/ 

Wu, X., Sahoo, D., & Hoi, S. C. H. (2020). Recent advances in deep learning for object 

detection. Neurocomputing, 396, 39–64. https://doi.org/10.1016/j.neucom.2020.01.085 

Zhou, X., Wang, D., & Krähenbühl, P. (2019). Objects as Points. 

http://arxiv.org/abs/1904.07850 



                                                             Asian Conference on Remote 

Sensing (ACRS 2024)  

Page 20 of 20 

Zhu, X., Hu, H., Lin, S., & Dai, J. (2019). Deformable ConvNets v2: More Deformable, Better 

Results. 

Zhu, X., Su, W., Lu, L., Li, B., Wang, X., & Dai, J. (2020). Deformable DETR: Deformable 

Transformers for End-to-End Object Detection. http://arxiv.org/abs/2010.04159 

Zoph, B., Cubuk, E. D., Ghiasi, G., Lin, T.-Y., Shlens, J., & Le, Q. V. (2019). Learning Data 

Augmentation Strategies for Object Detection. http://arxiv.org/abs/1906.11172  

 


