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ABSTRACT 

The anthropogenic activities are the major drivers for global Land Use and Land Cover Change 

(LULCC), which in-term influences the behavior of hydrological system. Understanding the 

repercussions of historical LULCC may facilitate in charting the sustainable path for future 

development and management endeavors. In the present study, LULC of the Tel Basin, India, 

was mapped and LULCC was quantified using remote sensing data. LULC mapped during 

years 1985, 1995, 2005, & 2015 was compared to understand the sptio-temporal dynamics of 

changes occurred during last thirty years. A noteworthy reduction of -8.20% in forest cover 

was observed, associated with increases of 7.82% and 0.32% in agricultural and settlement, 

respectively. To decipher the impact of these LULCCs, notably deforestation and urbanization, 

on the hydrological behavior of the basin the Variable Infiltration Capacity (VIC) model was 

setup using remote sensing derived topographical, LULC, vegetation parameters along with 

the in-situ datasets on soil & meteorology. The model was calibrated-validated using observed 

hydrological data and employed to quantify the impact of LULCC on runoff, 

evapotranspiration (ET), and baseflow in the Basin. The results indicated reduction in 

evapotranspiration by 1.63% (167.48mm) from 1985 to 2015, while runoff and baseflow 

exhibited increment of 1.15% (67.33mm) and 3.87% (108.25mm), respectively. These changes 

appear to be mainly driven by the transformation of 1,600 km2 of forest cover into agricultural 

and settlement land. The reduction of deep-rooted vegetative cover impels the reduction in 

permanent interception, ET and water holding capacity of the subsoil in the area, which further 

fuels the increase of surface runoff and baseflow from the basin. The pixel level analysis of 

LULCC and its impact on the hydrological behavior in the Tel Basin provides valuable inputs 

for the strategic management of water resources within the Basin, thereby contributing to 

informed decision-making for assuring long-term, environmental, socio-economic  

sustainability. 
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1. INTRODUCTION 

Land Use and Land Cover Change (LULCC) serves as a pivotal indicator of environmental 

transformations, contributing significantly to complex earth-atmosphere interactions (Gashaw 

et al. 2018). This phenomenon plays a substantial role in shaping hydrological and watershed 

processes (Garg et al. 2019; Naha, Rico-Ramirez, and Rosolem 2021), with anthropogenic 

factors serving as primary drivers of alterations in Land Use Land Cover (LULC). The 

consequential impacts extend across various hydrological processes within a watershed, 

encompassing interception, baseflow, evapotranspiration, surface runoff, percolation, 

groundwater recharge, water quality, and sediment yield. Numerous studies have delved into 

the effects of LULCC on hydrological processes (Garg et al., 2012; Garg et al., 2017; 

Aboelnour et al. 2021; Berihun et al. 2019; Ghimire et al. 2021; Matlhodi et al. 2021; Sulamo, 

Kassa, and Roba 2021), particularly highlighting the impacts of deforestation.  

In this context, hydrological models play a crucial role in simulating complex hydrological 

processes. The Variable Infiltration Capacity (VIC) model, a semi-distributed macroscale land 

surface/hydrological model developed by Liang et al. (1994, 1996) and Cherkauer et al. (2003), 

operates on a grid-based system, employing an energy and water balance approach to solve 

hydrological processes. Renowned for its ability to accurately capture streamflow processes 

and all components of the water budget, the VIC model has gained widespread acceptance and 

utility in global hydrological studies across diverse climatic regions and spatial scales 

(Aggarwal et al., 2013; Aggarwal et al., 2016; Dixit et al., 2015; Shiradhonkar et al., 2015; 

Garg et al., 2016; Abdulla et al. 1996; Chen et al. 2018; Cuo et al. 2013; Dahri et al. 2021; 

Haddeland, Skaugen, and Lettenmaier 2006; Lee, Kim, and Wang 2022; Lohmann, Raschke, 

and Lettenmaier 1998; Maurer et al. 2002; Niemeyer et al. 2018; Nijssen et al. 1997; Nijssen, 

Schnur, and Lettenmaier 2001; Niu, Chen, and Sun 2015; Shayeghi, Azizian, and Brocca 2020; 

Shrestha et al. 2012; Su et al. 2016; Tavakoly et al. 2017; Vetter et al. 2015; Voisin et al. 2011; 

Wang et al. 2021; Zamani Sabzi et al. 2019). Additionally, the Indian subcontinent has 

witnessed numerous studies employing the VIC model to analyze the interplay of LULCC and 

climate change on hydrology (Keerthiga et al., 2017; Sharma et al., 2019; Aggarwal et al. 2012; 

Chandu, Eldho, and Mondal 2022; Dadhwal, Aggarwal, and Mishra 2010; Das et al. 2018; 

Garg et al. 2019; Garg et al. 2013; Garg et al. 2017, 2012; Hengade and Eldho 2019; Kumari 
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et al. 2021; Nikam et al. 2018; Patidar and Behera 2019; Sinha, Eldho, and Subimal 2020; 

Naha, Rico-Ramirez, and Rosolem 2021). 

Tel catchment, a sub-basin of Mahanadi River basin, in India has experienced severe impacts 

from droughts and flash floods (Verma, Patel, and Choudhari 2022; Verma et al., 2022). Most 

of the previous studies in this area have focused on drought assessment (Mishra and Nagarajan 

2011), flood frequency analysis (Guru and Jha 2015) and morphometric analysis (Verma, Patel, 

and Choudhari 2022). Notably, studies combining geospatial technology and a semi-distributed 

model in the Mahanadi basin are limited (Behera et al. 2017; Behera et al. 2018; Dadhwal, 

Aggarwal, and Mishra 2010; Naha, Rico-Ramirez, and Rosolem 2021). Consequently, this 

study represents the inaugural attempt to investigate long-term hydrological behaviour changes 

(1981-2018) resulting from the extensive impact of deforestation in the Tel basin at a spatial 

resolution of 5 km. The primary objectives of this study are (1) LULC change detection and 

analysis employing machine learning techniques, and (2) quantifying the impacts of LULCC 

on hydrology of the basin. 

2. MATERIAL AND METHODS 

2.1. Study Area 

The Tel River, is a prominent tributary of the Mahanadi River. Longitudinally the Tel sub-

basin extends between 82° 03' E to 84°17' E,  and north-south expansion of the sub-basin is 

covered between latitudes of 19° 15' N to 20°55' N. The catchment area of the Tel sub-basin 

encompasses 22,818 km2, with the gauging station at Kesinga representing runoff output from 

11,960 km2 catchment and the gauging station at Kantamal having contributing area of 19,600 

km2 (Guru and Jha 2015). Characterized by a tropical wet and dry climate, the Tel sub-basin 

experiences an average annual rainfall of 1360 mm, with temperatures ranging from 14℃ to 

40℃. The region encounters a distinct dry period from December to May due to the absence 

of rain from the northeast monsoon. The erratic rainfall pattern renders the area susceptible to 

frequent crop failures and drought conditions. Given the limited duration of water availability 

in the sub-basin, it becomes imperative to explore whether changes in Land Use and Land 

Cover (LULC) impacts the basin hydrology.  

Agriculture assumes a dominant role in the Tel sub-basin, with paddy cultivation emerging as 

a major grain crop. The agricultural landscape also includes the cultivation of gram, mung, pea, 

mustard, and sugarcane. The sub-basin hosts semi-evergreen forest, tropical dry deciduous 

forest, tropical moist deciduous forest, mixed forest, and mangrove forest. Additionally, 
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shrubland, grassland, and plantations contribute to the diverse land use mosaic within the sub-

basin. The location of Tel sub-basin within the Odisha, India, its surface elevation profile and 

its appearance as seen during Oct.-Dec 2015 in the Slandered false colour composite generated 

using Landsat-8 OLI data, are shown in Figures 1 a to d.    

 
Figure 1. a) Location of Odisha in India; b) location of Tel sub-basin in Odisha; c) DEM of 

Tel sub-basin; d) FCC image of Tel Basin (acquired date-01/10/2015-30/12/2015) 

2.2. Assessment of LULC change 

The LULC data of the Tel sub-basin for years 1985, 1995, and 2005 were sourced from India's 

Decadal Land Use and Land Cover Classifications maps (Roy et al., 2016). For the year 2015, 

a LULC map was generated utilizing Landsat 8 Operational Land Imager (OLI) data with a 

spatial resolution of 30m, acquired between 01/10/2015 and 30/12/2015. Leveraging the 

Google Earth Engine platform, various machine learning algorithms, including Decision Tree 

(DT; Quinlan, 1986), Support Vector Machine (SVM; Cortes and Vapnik, 1995), and Random 

Forest (RF; Breiman, 2001), were explored. Machine learning algorithms were chosen for their 

high accuracy and efficiency in classification tasks, with Random Forest identified as the most 

accurate classifier for this study. Knowledge based corrections in each iterations were 

performed to improve the classification accuracy of this exercise. The LULC of 2015 generated 
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using machine learning tools was validated using reference data generated from legacy LULC 

maps and high resolution remote sensing data from year 2015. The integration of machine 

learning algorithms and rigorous correction processes underscores the commitment to precision 

in characterizing the evolving landscape over the specified temporal scale. The temporal 

analysis of LULC changes were performed at both sub-basin scale as well as pixel scale to 

quantify the LULC changes in the Tel sub-basin.   

2.3. Hydrological Model  

In this study, the Variable Infiltration Capacity (VIC) model was configured and validated for 

the Tel sub-basin, operating in a water balance mode. Specifically, the VIC-3L model, version 

4.2.d, featuring three soil layers, was employed at a daily time step with a grid size of 

0.05°×0.05°. The VIC model necessitates comprehensive data on topography, soil 

characteristics, vegetation attributes, and the biophysical properties of the vegetation for each 

grid. To facilitate model input, various parameter files, including soil parameter file, vegetation 

parameter file, vegetation library file, and meteorological forcing files, were utilized. The 

vegetation parameterization in the VIC model encompasses critical factors such as monthly 

Leaf Area Index (LAI), albedo, displacement height, roughness length, stomatal and 

architectural resistances, and the fractional coverage of each LULC class within each grid cell. 

LAI and albedo, derived from remote sensing data, are particularly influential parameters that 

significantly impact the model performance. Additionally, the distribution of roots across soil 

layers for all vegetation classes, as outlined by Maurer et al. (2001a, 2001b), was incorporated 

in the vegetation parameterization, along with the percentage coverage of each LULC class 

within each active grid. The vegetation library file contained detailed information regarding 

the biophysical properties of each LULC class. Surface runoff in the VIC model is induced 

through the Xiangjiang formulation (Zhao, 1980), which enacts infiltration excess in the top 

two soil layers. Baseflow is generated using the Arno formulation from the third soil layer 

(Franchini and Pacciani, 1991). To determine the outflow from the basin, the VIC model is 

coupled with a separate routing model developed by Lohmann et al. (1996). The routing model 

utilizes an instantaneous unit hydrograph to direct runoff and baseflow to the grid cell edges, 

subsequently transporting them to the river/channel network through a linearized St. Venant 

equation. The routing model adheres to a straightforward river routing scheme. 

For a comprehensive understanding of the model's formulations and structural features, one 

may refer to the works of Liang et al. (1996), Gao et al. (2010), and Liang et al. (1994b). Details 
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about input preparation and model implementation can be referred from Garg et al. (2017), 

Nikam et al. (2018), Behara et al. (2019). The integration of these model components allows 

for a detailed and dynamic representation of the hydrological processes within the Tel sub-

basin, facilitating the investigation of the impact of LULCC on the water balance over time. 

2.4. Input Dataset for Hydrological Modelling  

The VIC model incorporates several critical input parameters, encompassing soil type, land 

cover information, topographic features, and meteorological forcing, including rainfall, 

maximum and minimum temperatures, and wind speed. To populate these parameters for the 

Tel sub-basin, a comprehensive dataset was generated. Decadal LULC data for the years 1985, 

1995, and 2005 were obtained from the Decadal Land Use and Land Cover Classifications 

across India (Roy et al., 2016), providing a spatial resolution of 100m. Topographic features 

were derived from Shuttle Radar Topography Mission (SRTM) elevation data, specifically the 

SRTM V3 product (SRTM Plus) provided by NASA JPL at a resolution of 1 arc-second, 

equivalent to 30 m (Farr et al., 2007). The meteorological data, including daily gridded 

precipitation, temperature, and wind speed, were sourced from the Copernicus Climate Data 

Store, offering ERA-5 data at a resolution of 27.83 km. The soil texture information for each 

grid cell was extracted from the Harmonized World Soil Database, accessible through the FAO 

Soils Portal. Utilizing the soil hydraulic properties index proposed by Cosby et al. (1984) and 

Reynolds et al. (2000), essential hydraulic parameters such as saturated hydraulic conductivity, 

porosity, field capacity, and wilting point were calculated for each soil type. Monthly leaf area 

index (LAI) data for each LULC class was obtained from the MODIS LAI data product 

(MCD15A2, 2005) at a spatial resolution of 500 m. 

To validate the model, the observed daily discharge data at Kantamal gauging station for the 

period 1980 to 2018 was obtained from the India-Water Resources Information System (India-

WRIS) portal. This compilation of diverse datasets ensures that the VIC model is well-trained 

for all the prevailing conditions in the Tel sub-basin, allowing for robust simulations and 

meaningful insights into the hydrological dynamics. The integration of observed discharge data 

further enhances the model's reliability and provides a basis for validating the simulated 

hydrological outputs. 

2.5.  Calibration and Validation of VIC Model 

Calibration the VIC model was achieved by strategically tuning six key soil parameters: depth 

of three soil layers (d1, d2, d3), infiltration shape parameter (bi), the fraction maximum 



                               Asian Conference on Remote Sensing (ACRS 2024)  

subsurface flow where non-linear baseflow begins (DS), and the fraction of maximum soil 

moisture where non-linear baseflow occurs (Ws) were utilized. The parameter bi, representing 

infiltration capacity, governs the partitioning of precipitation into infiltration and direct runoff. 

Higher value of bi leads to increased surface runoff and reduced infiltration. The parameters 

d1, d2, and d3 denote the thickness of the first, second, and third soil layers, respectively. These 

parameters influence water availability for transpiration and baseflow, with thicker soil layers 

having a more significant impact on evapotranspiration, baseflow, and subsurface runoff. The 

parameters Ds and Ws relate to baseflow, determining the storage and release of water in the 

soil's lowest layer. Lower Ds values result in increased baseflow at lower soil moisture levels, 

while higher Ws values require more water for baseflow and contribute to a delayed peak runoff. 

To account for variations in vegetation characteristics over the years (e.g., 1985, 1995, 2005, 

and 2015), the vegetation parameters were adjusted annually. The simulated discharge from 

the model was compared against observed discharge data obtained from the India-WRIS portal 

to assess model performance. 

The calibration process aimed to achieve optimal model performance, and Nash-Sutcliffe 

Efficiency (NSE) values of 0.80 was taken as reference to classify the model performance as 

satisfactory in the Tel sub-basin, following the guidelines set by ASCE (1993). The modle 

simulation period covers the time period from 1980 to 2018, ensuring consistency in 

climatological forcing. Out of total duration calibration phase spanned from 1985 to 2005, 

while validation was conducted over data from 1996 to 2018. Notably, NSE values of 0.85 and 

0.80 were obtained for the calibration and validation periods, respectively. These values attest 

to the model's effectiveness in replicating observed discharge patterns and highlight its 

reliability in capturing the hydrological behaviour of the Tel sub-basin.  

2.6. Analysis of the Impact of LULCC on hydrology using multiple scenarios   

The impact of LULCC on hydrology (runoff potential, evapotranspiration, and baseflow) of 

the sub-basin was evaluated through a comparative analysis across four distinct scenarios: 

 Scenario-1 (S1): Hydrological simulations based on LULC of year 1985, utilizing 

meteorological data spanning the period of 1980-2018. 

 Scenario-2 (S2): Hydrological simulations based on LULC of year 1995, utilizing 

meteorological data spanning the period of 1980-2018. 

 Scenario-3 (S3): Hydrological simulations based on LULC of year 2005, utilizing 

meteorological data spanning the period of 1980-2018. 
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 Scenario-4 (S4): Hydrological simulations based on LULC of year 2015, utilizing 

meteorological data spanning the period of 1980-2018. 

By exposing four LULC scenarios (S1 to S4) to constant meteorological forcing 

(meteorological data of 1980-2018) the impact of climatic variations on the hydrological 

outputs were nullified. In S1 to S4 the variations if the hydrological behaviour of model will 

solely due to changes in surface conditions (LULC) in the basin. Through a meticulous analysis 

the changes in each hydrological component are quantified as either positive or negative 

anomalies in relation to a reference period. Quantification of these anomalies offers a means to 

detect and characterize spatial changes in hydrological processes caused due to changes in 

LULCC of the area. By systematically comparing the outcomes of each scenario against the 

backdrop of changing land cover, the study aims to elucidate the nuanced effects of LULCC 

on key hydrological parameters. This approach facilitates a comprehensive understanding of 

the intricate interplay between land use changes and the resulting alterations in water balance 

components over time. 

3. RESULT AND DISCUSSION 

3.1. LULC Mapping, accuracy assessment and Change Detection 

The decadal LULC maps for 1985, 1995 and 2005 were taken from legacy data (Roy et al., 

2016), however, the LULC for the year 2015 was derived using three machine learning 

algorithms (Decision Tree, DT; Support Vector Machine, SVM; and Random Forest, RF). The   

accuracy assessment was conducted to evaluate the LULC mapping performance of different 

Machine Learning (ML) for the year 2015. The results of the assessment are presented in Table 

1, showcasing the overall accuracy and Kappa coefficients for each ML algorithm.  

It is evident from the LULC accuracy assessment results that three ML algorithms employed 

for LULC mapping of Tel sub-basin Random Forest (RF) achieves highest mapping accuracy 

with overall accuracy of 95.69% and Kappa coefficient of 0.85.      

Table 1. Results of accuracy assessment of LULC mapping using ML algorithms  

ML Algorithm  Overall accuracy Kappa coefficient 

DT 74.01% 0.63 

SVM 83.03 % 0.74 

RF 95.69% 0.85 
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In the current investigation, decadal LULC maps were utilized to quantify the temporal 

evolution of land cover in the Tel sub-basin, with the year 1985 serving as the baseline. The 

LULC maps of year 1985, 1995, 2005 and 2015 are depicted in Figure 2. Two distinct 

analytical approaches were employed: (a) assessing overall changes in each LULC class 

relative to the baseline LULC of 1985, and (b) discerning the spatial patterns of LULC 

transformation at pixel level (100 m). The area occupied by each LULC class in 1995, 2005, 

and 2015 were compared against the reference year of 1985. This facilitated the calculation of 

the percentage change in total area under each LULC class with reference to baseline scenario 

(LULC of 1985). Through this approach, the study aimed to identify and characterize both 

spatial and temporal changes in LULC patterns, offering crucial insights into the spatio-

temporal dynamics of LULC and LULCC in the study area. The results of this analysis are 

depicted in Figures 3a and 3b, employing False Color Composite (FCC) images to showcase 

the prominent changes that have occurred in the LULC classes.  This nuanced exploration of 

LULC changes contributes to a broader comprehension of the interactions between human 

activities and the natural environment within the Tel sub-basin. The subsequent phases of the 

study are expected to delve into the hydrological implications of these LULC changes, 

shedding light on how alterations in land cover influences hydrology the region. 

The analysis of Land Use and Land Cover Change (LULCC) between 1985 and 2015 in the 

Tel sub-basin has provided valuable insights into the evolving landscape over the past three 

decades. The key findings of this analysis include: 

Forest Cover Changes (1985-2015): Forest cover exhibited a significant decline of 8.20% 

over the 30-year period. Approximately 1,600 km2 of forest land underwent conversion to 

agricultural use (Table 3b), reflecting substantial deforestation to support the economic activity 

in the sub-basin. 

Agricultural Expansion (1985-2015): Agriculture witnessed a noteworthy increase of 7.08%. 

On the other hand, around 122 km2 of agricultural land was converted into water bodies, 

primarily due to the construction of water-retaining structures. 
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Figure 2. LULC maps of the basin for the years 1985, 1995, 2005, and 2015 

Table 2 a. The LULC changes (km2) matrix during year 1985 and 2005 

 LULC of 2005 

AG BL FL F SL UR WB Total 

LULC 
of 1985 

AG 11552.88 1.70 8.01 671.45 454.79 2.96 77.18 12768.98 

BL 4.56 9.77 0.00 6.24 12.17 0.00 0.19 32.94 

FL 18.97 4.13 36.58 0.13 2.62 0.00 0.06 62.48 

F 162.15 0.48 0.05 8658.33 59.92 0.07 10.59 8891.59 

SL 115.12 0.74 0.16 312.04 724.10 0.06 3.49 1155.72 

UR 13.34 0.00 0.00 8.23 0.17 35.65 0.01 57.41 

WB 104.34 0.00 0.04 17.95 12.54 0.05 233.06 367.99 

Total 11971.36 16.82 44.84 9674.39 1266.32 38.79 324.58 23337.11 

 
Table 2 b. The LULC changes (km2) matrix during year 1985 and 2015 
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 LULC of 2015 

AG BL FL F SL UR WB Total 

LULC 
of 1985 

AG 11473.02 1.27 6.77 1607.76 467.56 2.11 65.46 13623.94 

BL 4.97 10.02 0.00 6.22 12.53 0.00 0.28 34.01 

FL 36.31 4.24 37.73 1.78 3.28 0.04 0.85 84.24 

F 59.78 0.27 0.03 7701.10 21.71 0.03 3.02 7785.94 

SL 176.92 0.89 0.19 325.16 746.74 0.06 4.59 1254.55 

UR 66.09 0.00 0.00 8.22 0.21 36.50 0.10 111.11 

WB 154.94 0.17 0.13 26.10 13.74 0.06 250.30 445.43 

Total 11972.03 16.86 44.84 9676.32 1265.78 38.80 324.59 23339.22 

**The diagonal values for respective LULC classes are given in bold, indicating the area 
that has stayed unaltered between two time periods; 

Expansion of Settlements (1985-2015): Area under settlements has experienced a modest 

increase of 0.32%, this limited development of settlements can be attributed to the population 

rise and partial industrialisation/commercialization in the parts of sub-basin. 

Fallow Land and Water Bodies (1985-2015): Increase of 0.17% was observed in the fallow 

land in the basin, suggesting migration of farmers to other sources of income (industry or other 

employments). Area under Water bodies has expanded by 0.51%, mainly attributed to the 

creation of water-retaining structures to meet growing population and industrial needs. 

The analysis further highlighted distinct shifts in LULC between 1985 and 2005, with less 

pronounced changes compared to the period between 1985 and 2015. The apparent 

transformation observed from 1985 to 2015, particularly the conversion of a significant forest 

area to agriculture, shrub land, barren land, and fallow land, underscores the impact of 

developmental activities in the region. 

Figures 3a and 3b illustrates the transformation of LULC, indicating how specific areas 

transitioned from one LULC class to another between 1985 and 2015. Figure 3a shows the 

LULC map of year 1985. Two regions, one on eastern part of sub-basin, indicated by black 

dashed box and another on western part of the sub-basin, indicated by red dashed box, are used 

to highlight these areas where dominant deforestation has occurred. The Standard FCC of these 

selected areas, generated using Landsat 5 TM data of year 1985 are also shown in Figure 3a . 

Similar, pectoral representation of LULC of the sub-basin for the year 2015 and the FCC 
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images of selected areas are shown in Figure 3b. The substantial loss of forest cover can be 

clearly seen in the western part of the basin (red dashed box). The same can be seen in FCCs 

of year 1985 and 2015 of this part of the basin. On the other corner (black dashed box) no major 

change in forest boundary is observed, however the quality of forest cover/forest density 

appears to be degraded in 2015 compared to the 1985.  This visual depiction allows for a clearer 

understanding of the spatial patterns and trends in land cover changes over the three-decade 

period. 

The subsequent step in our analysis aimed at verifying the land conversion dynamics over a 

span of 30 years, from 1985 to 2015. A conversion map detailing the transitions between 

different LULC classes during this period was generated, providing a visual representation of 

the alterations in the landscape (see Figures 4).  

Figure 3.a) LULC and FCC image of selected area from year 1985; b) LULC and FCC 

image of selected area from year 2015 

3.3 Impact of LULC change on basin hydrology  

The hydrological response of Tel sub-basin under four LULC scenario (S1:1985; S2:1995; 

S3:2005; and S4:2015) under constant meteorological inputs were simulated using calibrated 

and validated VIC model. The hydrological components viz. evapotranspiration (ET), surface 

runoff, and baseflow under these four scenario were compared at basin level to quantify the 

overall impact of LULC changes that are highlighted in the previous sections. The key findings 

are as follows: 

Increase in Surface Runoff Potential: The study observed a consistent increasing trend in 

average annual surface runoff potential of the basin. The long-term average annual surface 

runoff from the Tel sub-basin under Scenario S1 (LULC of year 1985) was around from 349.00 

a) 1985 b) 2015 
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mm which increased to 353.00 mm under the Scenario S4 (LULC of year 2015). This suggests 

a potential shift in the basin's hydrological dynamics influenced by LULCC. 

 

 
Figure 4. LULC conversion map of the basin between 1985 and 2015 

AG- Agriculture, BL- Barren land, FL- Fallow land, F- Forest, SL-Shrubland, UR- Urban, 
WB – Waterbodies) 

Evapotranspiration (ET) Changes: Contrary to the trends observed in case of surface runoff 

from the basin a noticeable decreasing trend in annual ET was observed from S1 (931.3 mm) 

to S4 (916.1 mm). This declining trend is in agreement with the LULCC trend of the sub-basin, 

reduction of permanent green. 

Baseflow Increase: The study reveals a consistent increase in average baseflow from S1 

(188.50 mm) to S4 (195.8 mm). This upward trend suggests alterations in land use impacting 

the groundwater recharge and subsurface flow dynamics. 



                               Asian Conference on Remote Sensing (ACRS 2024)  

The basin average values of surface runoff, evapotranspiration and baseflow under all four 

scenarios (S1, S2, S3, and S4) are summarised in Table 3 and depicted in Figures 5.     

Table 3. Basin-average values of surface runoff, Evapotranspiration, and Baseflow under 

four LULC scenarios  

 S1  
(LULC- 1985) 

S2  
(LULC-1995) 

S3  
(LULC-2005) 

S4  
(LULC-2015) 

Surface Runoff 349.0 350.0 351.7 353.0 

Evapotranspiration 931.3 928.9 925.1 916.1 

Baseflow 188.5 189.9 192.0 195.8 

 
Figure 5. Trends in Surface runoff, Evapotranspiration, and Baseflow under four LULC 

scenario  

It was observed that during the period of 30 years (1985 to 2015) the basin has undergone 

substantial changes in its LULC (e.g. ~8.2% reduction in forest cover, ~7% increase in active 

agriculture area, enhancement of waterbodies, etc.), however, the hydrological outputs under 

these LULC scenarios at sub-basin level show moderate to little variation (e.g. 4 mm increase 

in annual runoff, 15 mm reduction in annual evapotranspiration, etc.). Though even single 

millimetre change in any hydrological value over a basin as large as Tel sub-basin (22,818 km2) 

is statistically substantial, however, the 1600 km2 reduction of forest cover was expected to 

yield large hydrological response in the impact analysis results. The dampened impact of this 

LULCC on the hydrological behaviour insisted the need for in-depth analysis to find the 

causative factors. To understand this hydrological behaviour of Tel basin the pixel wise 

LULCC map (Figure 4) was converted into three classes 1) LULC change that has potential of 

increasing surface runoff, 2) LULC change that can potentially reduce the surface runoff, and 

3) the class where not LULC change has happed. This classified map is shown in Figure 6. A 

careful analysis of this map revels that in the Tel sun-basin during 1985 to 2015 around  

2143.71 km2 area has undergone LULCC that has potential of reducing the surface runoff and 
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at the same time around 848.57 km2 area has undergone LULCC that can potentially increase 

the runoff response. This is why the surface runoff at basin scale appears to have dampened 

impact of LULCC from 1985- 2015. Most of the runoff acceleration impact due to conversion 

of permeable area into non-permeable area gets cancelled out by the large conversion of LULC 

classes that may reduce the runoff generation in the sub-basin. This self-cancelling behaviour 

of LULCC in any hydrological unit needs in-depth analysis and understanding to plan 

sustainable future/developmental activities.       

 
Figure 6. Impact of LULC change on runoff generation 

 

4. CONCLUSION 

The analysis of Land Use and Land Cover (LULC) dynamics in the Tel basin provides a robust 

foundation for understanding hydrological responses. Decadal mapping, employing advanced 

Machine Learning (ML) techniques, revealed an 8.20% decline in forest cover over 30 years, 

mainly due to deforestation (1,600 km2 converted to agriculture). This transformation 

significantly impacted runoff, contributing to a noteworthy increase of 67.33 mm at pixel level. 

The consistent rise in runoff potential, coupled with a 167.48 mm decrease in 

evapotranspiration (at pixel level), underscores the intricate link between land cover changes 

and hydrological dynamics. Scenario-based analysis highlights the cumulative impact of 

urbanization and deforestation on increased runoff, emphasizing the need for sustainable land 
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management. The observed anomaly in baseflow underscores the intricate relationship between 

land use modifications and subsurface flow. These findings have broader implications, 

emphasizing the delicate balance between anthropogenic activities and hydrological processes, 

necessitating informed land management decisions for watershed resilience in the face of 

environmental challenges. Future considerations should involve predictive modeling and 

climate change scenarios to anticipate potential shifts in LULC and their hydrological impacts. 

In conclusion, the findings underscore the critical role of informed land management decisions, 

especially in regions experiencing dynamic land use changes. Forest preservation emerges as 

a linchpin for sustaining a balanced and resilient water cycle within the Tel sub-basin. This 

scientific exploration contributes to the broader understanding of human-induced impacts on 

hydrological dynamics and underscores the imperative for sustainable watershed management 

practices. 
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